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Um percurso rumo ao teorema de Atiyah-Singer

Resumo

O projeto do qual resulta esse trabalho teve por objetivo o estudo dos pré-requisitos do te-
orema de Atiyah-Singer para que, depois, uma demonstração do teorema fosse estudada. Aqui
apresentamos, de forma abreviada, uma significativa parcela dos conceitos e resultados matemá-
ticos necessários à enunciação e demonstração do teorema, os quais foram abordados no decorrer
do projeto de conclusão de curso e não esgotam o conteúdo teórico requerido pelo teorema. A
porção coberta desse conteúdo abrange os seguintes assuntos que serão apresentados: varie-
dades suaves; estrutura tangente de variedades suaves; funções suaves, submersões, imersões
e mergulhos; fluxos e curvas integrais; grupos de Lie e suas álgebras de Lie; fibrados vetoriais
suaves; seções de fibrados vetoriais e formas diferenciais; conexões afins em fibrados vetori-
ais; curvatura em fibrados vetoriais; fibrados principais; conexões e distribuições em fibrados
principais; curvatura em fibrados principais; e fibrados associados.

1 Introdução

O teorema de Atiyah-Singer é um dos mais marcantes resultados em geometria obtidos no século XX.

Grosso modo, o teorema lida com sistemas de equações diferenciais. O índice analítico associado a

um sistema de equações diferenciais consiste na diferença entre o número de parâmetros necessários

para descrever todas as soluções e o número de relações existentes entre as equações do sistema. À

primeira vista, pode parecer tão difícil calcular o índice analítico quanto encontrar as soluções do

sistema. O teorema de Atiyah-Singer mostra justamente que não é o caso, porque o índice analítico

efetivamente é determinado só pela topologia dos espaços envolvidos. Destacamos ainda que vários

outros teoremas notáveis da geometria são casos particulares do teorema de Atiyah-Singer (por

exemplo, o teorema de Riemann-Roch, o teorema de Gauss-Bonnet e o teorema da assinatura de

Hirzebruch).

Suponha que 𝑀 seja uma variedade compacta sem bordo orientada, que 𝐸 e 𝐹 sejam fibrados

vetoriais suaves sobre𝑀 , e que𝐷 seja um operador diferencial elíptico de 𝐸 para 𝐹 . O índice analítico

inda(𝐷) do operador 𝐷 é a diferença dim ker𝐷 − dim coker𝐷 entre as dimensões de seu núcleo e

de seu conúcleo. O teorema de Atiyah-Singer diz que o índice analítico inda(𝐷) é igual ao índice

topológico indt(𝐷) = ∫𝑀 ch(𝐷)Td(𝑀).
Em nosso projeto de conclusão, não chegamos até o estudo da demonstração em si, mas per-

corremos uma extensão do trajeto até o teorema e é apresentá-la o objetivo desse trabalho. Cabe

ressaltar mais um aspecto que delimita esse trabalho. Do esforço requerido para desenvolver a teoria

necessária para o teorema de Atiyah-Singer, uma parte significativa se emprega na construção con-

sistente de uma série de conceitos sofisticados e na articulação desses vários conceitos construídos,

alguns inclusive de que se fez uso na explicação acima. Decidiu-se dedicar esse trabalho sobretudo à

apresentação desse aspecto, sem que nos detenhamos em exibir minuciosamente as demonstrações

de que as construções estão bem definidas, de que certos objetos existem e de que certas proprie-

dades valem. Há muito valor nesse segundo aspecto e ele foi abordado no decurso do projeto de
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conclusão, entretanto, pareceu mais propício à elaboração desse documento conforme o modelo da

monografia a abordagem segundo o primeiro aspecto.

Começaremos com algumas definições fundamentais relacionadas a variedades suaves. Em se-

guida, apresentaremos a ideia de fibrados e alguns conceitos relacionados, sobretudo considerando

fibrados vetoriais. Cobriremos então o necessário de grupos de Lie a fim de apresentar os fibrados

principais e resultados iniciais do estudo desses fibrados. As notas de aula [1] de Liviu I. Nicolaescu

guiaram a escolha dos tópicos a se abordar. Já no estudo específico de cada um dos tópicos, recor-

remos sobretudo aos livros [2] de Loring W. Tu, [3] de John M. Lee e [4] de Ivan Kolář,Peter W.

Michor e Jan Slovák. .

2 Variedades suaves

2.1 Definições iniciais
Entre os conceitos fundamentais no caminho para o teorema do índice de Atiyah-Singer está o de

uma variedade suave. Começaremos por esse conceito que é material para a construção de tantos

outros mais sofisticados nesse caminho, como o de fibrados vetoriais suaves e de fibrados principais.

É importante salientar que nesse trabalho o termo “suave” sempre aludirá a condições de existência

e continuidade de todas as derivadas; no caso de uma função ℝ𝑛 → ℝ𝑚, entende-se por suave que

todas as derivadas parciais existem e são contínuas.

Como na definição de tantos outros conceitos adiante, a definição de variedade suave tenta

abstrair de objetos familiares do contexto de ℝ𝑛 características o mais intrínsecas possível a fim

de trabalhar com conceitos que são mais gerais sem perda de poder descritivo e obter com eles

resultados mais gerais ou semelhantes, comumente, de maneira menos esforçosa, mais natural.
Considere um espaço topológico 𝑀 . Diz-se que 𝑀 é uma variedade suave de dimensão 𝑘 se

i. 𝑀 é Hausdorff e tem base enumerável;

ii. Todo ponto de 𝑀 tem uma vizinhança aberta homeomorfa a um aberto de ℝ𝑛.

iii. Existe uma cobertura aberta {𝑈𝑖}𝑖∈𝐼 de 𝑀 para cada aberto 𝑈𝑖 da qual está definido um home-

omorfismo 𝜑𝑖 desde 𝑈𝑖 a um aberto 𝑈̆𝑖 em ℝ𝑛 (leia 𝑈̆ como “𝑈 breve”).

iv. Para quaisquer 𝑈𝑖 e 𝑈𝑗 membros da cobertura, vale que 𝜑𝑗 ∘ 𝜑−1𝑖 ∶ 𝜑𝑖(𝑈𝑖 ∩ 𝑈𝑗) → 𝜑𝑗(𝑈𝑖 ∩ 𝑈𝑗) é

uma função suave de inversa suave (um difeomorfismo).

Chamamos aos pares (𝑈𝑖, 𝜑𝑖) de cartas, e nos referimos a duas cartas satisfazerem a propriedade

(iv) dizendo que essas cartas são compatíveis. Diremos que uma carta registra um ponto quando

tal ponto pertence ao aberto dessa carta e nos referiremos às funções 𝜑𝑖 (e suas inversas) como

mapeamentos. À coleção das cartas pressupostas para uma variedade suave damos o nome de

atlas. Suprimiremos o termos “suave” e não faremos menção à dimensão de uma variedade, sempre

que o contexto não pedir ou não deixar dúvida.

Da definição de variedade, brota, com certa naturalidade, o entendimento do que são funções

suaves entre variedades. Sendo 𝑀 e 𝑁 variedades suaves de dimensões 𝑘 e ℓ (suponha sempre o
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“respectivamente” em frases assim), podemos expressar uma função 𝑓 ∶ 𝑀 → 𝑁 conforme cartas

em cada uma das variedades e alicerçar a nova definição na definição de suavidade para funções

ℝ𝑘 → ℝℓ. Tome um ponto 𝑝 em 𝑀 , uma carta (𝑈 , 𝜑) que registre 𝑝 e uma carta (𝑊 , 𝜑) que registre

𝑓 (𝑝). Considerando 𝜑−1 restrita a 𝜑(𝑓 −1(𝑓 (𝑈 ) ∩ 𝑊)) para poder compor 𝑓 com os mapeamentos,

temos que ̆𝑓 ∶= 𝜓 ∘ 𝑓 ∘ 𝜑−1 é uma função para a qual a noção de suavidade já está definida, veja:

ℝ𝑘 ⊃ 𝜑(𝑓 −1(𝑓 (𝑈 ) ∩ 𝑊)) 𝜑−1⟶ 𝑓 −1(𝑓 (𝑈 ) ∩ 𝑊) 𝑓⟶ 𝑓(𝑈 ) ∩ 𝑊 𝜓⟶ 𝑊̆ ⊂ ℝℓ.
Se para qualquer ponto 𝑝 em 𝑀 e quaisquer cartas (𝑈 , 𝜑) e (𝑊 , 𝜓 ) ajustados como acima, valer que
̆𝑓 é suave, então diz-se que a própria 𝑓 é suave. Para além disso, diz-se que 𝑓 ∶ 𝑀 → 𝑁 é um

difeomorfismo se 𝑓 for suave e tiver uma inversa também suave.

2.2 Vetores tangentes, tipos de mapas suaves e subvariedades
Para tipificar alguns mapas suaves especiais em breve, e para bastantes outras coisas mais adiante,

precisamos trazer de ℝ𝑘 a ideia de vetores tangentes. Há algumas maneiras equivalentes de fazer

isso, mas talvez a mais profícua – por conseguir reaplicar-se em contextos nos quais as demais não

conseguem  – seja aquela em que se abstrai dos vetores de ℝ𝑘 a qualidade de determinar derivadas

direcionais para funções suaves de ℝ𝑘 para ℝ. Uma outra maneira leva em consideração classes de

curvas às quais certo vetor é tangente. Parte da relação entre vetores tangentes e curvas transpare-

cerá quando falarmos em curvas integrais e fluxos.

Fixe um ponto 𝑝 na variedade 𝑀 . No espaço de todos os pares (𝑈 , 𝛼), em que 𝑈 é um aberto

de 𝑀 que contém 𝑝 e 𝛼 é uma função suave desde 𝑈 a ℝ, define-se esta relação de equivalência:

(𝑈 , 𝛼) ∼ (𝑉 , 𝛽) se 𝛼 e 𝛽 coincidem num aberto incluso em 𝑈 ∩𝑉 . Chamamos as classes de equivalência

de germes de funções suaves em 𝑝 e denotamos por [𝛼]𝑝 a classe correspondente a uma função

suave 𝛼 desde um aberto em torno de 𝑝 para ℝ. O espaço de todos os germes em 𝑝 é simbolizado

por 𝐶∞𝑝 (𝑀). Uma derivação em 𝑝 é um mapa linear 𝐷 ∶ 𝐶∞𝑝 (𝑀) → ℝ que satisfaz a seguinte regra

do produto: 𝐷[𝛼𝛽]𝑝 = 𝛼(𝑝)𝑣[𝛽]𝑝 + 𝛽(𝑝)𝐷[𝛼]𝑝 .

Considere 𝑀 = ℝ𝑘 e fixe um ponto 𝑝. Dado um vetor 𝑣 em ℝ𝑘 , dizemos que um par (𝑝, 𝑣) é um

vetor tangente em 𝑝 (visualize isso como a flecha 𝑣 apoiada em 𝑝) e denotamos o par (𝑝, 𝑣) por 𝑣𝑝 .

Podemos entender 𝑣𝑝 como uma derivação em 𝑝 definindo a maneira como atua em germes: 𝑣𝑝[𝛼]𝑝 =
( d

d𝑡 𝛼(𝑝 + 𝑡𝑣))𝑡=0. Podemos também fazer o inverso, para cada derivação 𝐷 em 𝑝, encontrar o vetor

𝑣 ∈ ℝ𝑘 tal que 𝑣𝑝 = 𝐷. Dado um germe [𝛼]𝑝 , tome um representante (𝑈 , 𝛼). Como 𝛼 ∶ 𝑈 → ℝ é suave,

podemos escrever 𝛼(𝑥) = 𝛼(𝑝)+∫10 d
d𝑡 [𝛼(𝑝 + 𝑡(𝑥 − 𝑝))] d𝑡 . Denotando por 𝑥 𝑖 e 𝑝𝑖 as componentes de

𝑥 e 𝑝, ficamos com 𝛼(𝑥) = 𝛼(𝑝)+∑𝑘
𝑖=1(𝑥 𝑖−𝑝𝑖) ∫10 𝜕𝛼

𝜕𝑥 𝑖 (𝑎+𝑡(𝑥−𝑎))d𝑡 =∶ 𝛼(𝑝)+∑𝑘
𝑖=1(𝑥 𝑖−𝑝𝑖)𝛽𝑖(𝑥).Vamos

agora aplicar 𝐷 a [𝛼]𝑝 . Note, de antemão, que, como 𝐷 segue a regra de Leibniz, 𝐷(1) = 𝐷(1 · 1) =
2𝐷(1), o que implica que 𝐷(1) = 0 e, por linearidade, que 𝐷(𝑎) = 0 para qualquer constante 𝑎. Tendo

isso em mente, vemos que 𝐷[𝛼]𝑝 = 0 + 𝐷[𝛽𝑖]𝑝(𝑝𝑖 − 𝑝𝑖) + 𝛽𝑖(𝑝)(𝐷[𝑥 𝑖]𝑝 − 0) = ∑𝑘
𝑖=1

d𝛼
d𝑥 𝑖 (𝑝)𝐷[𝑥 𝑖]𝑝 , o

que quer dizer que 𝐷 é a derivação 𝑣𝑝 correspondente ao vetor 𝑣 ∶= ∑𝑘
𝑖=1 𝐷[𝑥𝑖]𝑝 𝑒𝑖 , em que 𝑒1, ..., 𝑒𝑘

são os vetores da base canônica. Dessa maneira, em ℝ𝑘 , há uma correspondência entre derivações
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e vetores tangentes, a qual nos encoraja a partir para variedades arbitrárias 𝑀 só com a ideia de

derivações para cumprir o papel dos vetores.

Definimos T𝑝𝑀 , o espaço tangente a 𝑀 em 𝑝, como o espaço vetorial de todas as derivações

de germes de funções suaves em 𝑝, às quais chamaremos também de vetores tangentes. Dada uma

função suave 𝑓 ∶ 𝑀 → 𝑁 , podemos considerar o mapa tangente de 𝑓 em 𝑝 definido como a função

linear T𝑝𝑓 ∶ T𝑝𝑀 → T𝑓 (𝑝)𝑁 que manda uma derivação 𝑣 para a derivação (T𝑝𝑓 )𝑣 ∶ 𝐶∞𝑓 (𝑝)(𝑀) →
ℝ, 𝛼 ↦ 𝑣(𝛼 ∘ 𝑓 ).

Vamos agora montar o fibrado tangente de 𝑀 . Denote por T𝑀 esta união disjunta: ⨆𝑝∈𝑀 T𝑝𝑀 ,

e por 𝜋 ∶ T𝑀 ↠ 𝑀 a projeção associada. Conferiremos a T𝑀 uma topologia e um atlas suave, de

uma maneira natural, usando de material as tais estruturas já presentes em 𝑀 . Uma carta (𝑈 , 𝜑) do

atlas de 𝑀 induz em T𝑀 a carta (𝑈̂ , 𝜑̂) em que se define: 𝑈̂ ∶= 𝜋−1(𝑈 ) e 𝜑̂ ∶ 𝑈̂ → 𝑈̆ × T𝜑(𝑝)ℝ𝑘 ≃
𝑈̆ × ℝ𝑘 , (𝑝, 𝑣𝑝) ↦ (𝜑(𝑝), 𝑇𝑝𝜑𝑣𝑝). Já a topologia de T𝑀 é conferida designando como abertos os

subconjuntos 𝐴 de T𝑀 tais que 𝜑̂(𝑈̂ ∩𝐴) é aberto em 𝑈̆ ×ℝ𝑘 para qualquer carta (𝑈̂ , 𝜑̂). Dizemos que

T𝑀 com toda essa estrutura é o fibrado tangente de 𝑀 .

Com esse construto que reúne os espaços tangentes em cada ponto, se pode definir para funções

suaves 𝑓 ∶ 𝑀 → 𝑁 a função suave T𝑓 ∶ T𝑀 → T𝑁 , chamada de omapa tangente total, que manda

cada 𝑣𝑝 em cada T𝑝𝑀 para (T𝑝𝑓 )𝑣𝑝 . Aludiremos a ele, com frequência, puramente como o mapa

tangente. O mapa tangente total goza dessas duas propriedades: (i) denotando por 1𝑀 a identidade

𝑀 → 𝑀 e por 1T𝑀 a identidade T𝑀 → T𝑀 , temos que T(1𝑀 ) = 1T𝑀 ; (ii) sendo 𝑔 ∶ 𝑁 → 𝑂
uma função suave, T(𝑔 ∘ 𝑓 ) = (T𝑔) ∘ (T𝑓 ). As atribuições 𝑀 ↦ T𝑀 e 𝑓 ↦ T𝑓 e as propriedades

mencionadas, configuram um objeto especial à luz da teoria de categorias. Vamos introduzir suas

noções básicas: a de categorias e a de funtores.

Uma categoria 𝒞 consiste de uma coleção de objetos 𝑋, 𝑌 , 𝑍 , ... e uma coleção de morfismos
𝑓 , 𝑔, ℎ, ... que segue estes ditames. Para todo morfismo 𝑓 , existem dois objetos que são chamados de

domínio de 𝑓 e codomínio de 𝑓 ; se eles são, respectivamente, 𝑋 e 𝑌 , denota-se 𝑓 ∶ 𝑋 → 𝑌 . Para

cada objeto 𝑋 , está designado o morfismo 1𝑋 ∶ 𝑋 → 𝑋 que é chamado de morfismo identidade de

𝑋 . Dados morfismos 𝑓 e 𝑔, se o codomínio de 𝑓 coincidir com o domínio de 𝑔, existe um morfismo

𝑔𝑓 cujo domínio é o de 𝑓 e cujo codomínío é o de 𝑔, o qual chamamos de morfismo composto ou

composição. Devem ainda ser válidos estes dois axiomas:

• Para qualquer morfismo, 𝑓 ∶ 𝑋 → 𝑌 , vale que 1𝑌 𝑓 = 𝑓 e 𝑓 1𝑋 = 𝑓 .

• Para quaisquer morfismos, 𝑓 ∶ 𝑋 → 𝑌 , 𝑔 ∶ 𝑌 → 𝑍 e ℎ ∶ 𝑍 → 𝑊 , os morfismos ℎ(𝑔𝑓 ) e (ℎ𝑔)𝑓
são o mesmo morfismo.

Um funtor covariante 𝐹 desde uma categoria 𝒞 para uma categoria𝒟 consiste nas atribuições:

um objeto 𝐹𝑋 em 𝒟 para cada objeto 𝑋 em 𝒞; um morfismo 𝐹𝑓 ∶ 𝐹𝑋 → 𝐹𝑌 em 𝒟 para cada

morfismo 𝑓 ∶ 𝑋 → 𝑌 em 𝒞, sendo 𝐹𝑋 e 𝐹𝑌 as imagens de 𝑋 e 𝑌 por 𝐹 . Essas atribuições estão

sujeitas aos seguintes axiomas de funtorialidade: (𝐹𝑔)(𝐹𝑓 ) = 𝐹(𝑔𝑓 ) e 𝐹(1𝑋 ) = 1𝐹𝑋 . Os funtores

contravariantes são aqueles que invertem as direções dos morfismos quando aplicados. Em vista de

que as variedades suaves junto com os mapas suaves formam uma categoria, constata-se que T é um
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funtor desta categoria para ela mesma. Outras categorias com que nos depararemos são: a de espaços

vetoriais de dimensão finita e mapas lineares, e a de fibrados vetoriais com morfismos de fibrados

vetoriais. Nesse trabalho, o uso que faremos da linguagem da teoria de Categorias não é amplo.

Contudo, ela orienta o atual pensamento sobre a geometria e sobre várias áreas da matemática e é o

que nos torna, de uma perspectiva filosófica, propensos a empregar bastantes vezes o termo natural.
Cabe agora definir os tipos especiais de mapas suaves a que se fez menção. Uma função suave

𝑓 ∶ 𝑀 → 𝑁 é dita uma submersão quando seu mapa tangente é sobrejetivo em cada ponto de

𝑀 , isto é, T𝑝𝑓 é sobrejetivo para todo 𝑝 ∈ 𝑀 . Já quando o mapa tangente de 𝑓 é injetivo em cada

ponto, diz-se que 𝑓 é uma imersão. Se além de ser uma imersão, 𝑓 é um homeomorfismo sobre

a imagem, diz-se que 𝑓 é um mergulho. Munidos dessa maneira de qualificar os mapas suaves,

podemos definir o que é uma subvariedade. Há algumas noções um pouco diversas de o que é uma

subvariedade; e essa diversidade surge da distinção no que se espera para os mapas de inclusão e

para as estruturas topológicas dos subconjuntos que se quer encarar como subvariedades. Aquelas

de que nos ocuparemos são as subvariedades mergulhadas que consistem em variedades 𝑁 que

estão inclusas em 𝑀 como conjuntos e para as quais o mapa de inclusão 𝑁 ↪ 𝑀 se trata de um

mergulho suave.

2.3 Campos vetoriais, curvas integrais e fluxos
Um campo vetorial 𝑋 em 𝑀 é uma função 𝑋 ∶ 𝑀 → T𝑀 que associa a cada ponto 𝑝 em 𝑀 um

elemento de T𝑝𝑀 que denotamos por 𝑋𝑝 . Simbolizamos por 𝔛(𝑀) o espaço vetorial de todos os

campos vetoriais suaves, no qual a adição e a multiplicação por escalares são definidas fibra a fibra:

𝑋 + 𝑌 ∶ 𝑝 ↦ 𝑋𝑝 + 𝑌𝑝 e 𝑎𝑋 ∶ 𝑝 ↦ 𝑎𝑋𝑝 . Como cada 𝑋𝑝 é uma derivação de germes de funções

em 𝑝, é propício entender 𝑋 como um operador em 𝐶∞(𝑀) que atua mandando a função suave 𝛼
para a função suave 𝑋𝛼 ∶ 𝑀 → ℝ, 𝑝 ↦ 𝑋𝑝[𝛼]𝑝 . Também desde o nível da atuação em germes,

dados campos suaves 𝑋 e 𝑌 , define-se o campo [𝑋 , 𝑌 ] ∶ 𝑝 ↦ 𝑋𝑝𝑌𝑝𝑓 − 𝑌𝑝𝑋𝑝𝑓 que também é suave;

e com isso, se ganha a operação binária [·, ·] em 𝔛(𝑀) chamada de colchete de Lie. Da definição

do colchete de dois campos se extrai que ele é uma operação bilinear, antisimétrica e que satisfaz a

chamada identidade de Jacobi: [[𝑋 , 𝑌 ], 𝑍] = [𝑋 , [𝑌 , 𝑍]] − [[𝑋 , 𝑍], 𝑌 ]. Assim, provido do colchete de

Lie, o espaço vetorial 𝔛(𝑀) constitui uma álgebra de Lie, estrutura algébrica que é justamente um

espaço vetorial em que está definido um produto de vetores que é bilinear, antisimétrico e satisfaz a

identidade de Jacobi.

Vamos explorar a relação entre vetores e curvas. Dada uma curva 𝛾 ∶ 𝐽 → 𝑀 desde um

intervalo aberto 𝐽 , podemos definir de forma natural 𝛾 ′(𝑡), o vetor tangente à curva 𝛾 no ponto
𝛾 (𝑡). O vetor 𝛾 ′(𝑡) é a derivação no ponto 𝛾 (𝑡) que atribui a cada germe [𝛼]𝑝 o valor d

d𝑠 (𝛼 ∘ 𝛾 (𝑠))𝑠=𝑡 .
Denotamos por d𝛾

d𝑡 ou por 𝛾 ′(𝑡) a função que associa 𝛾 ′(𝑡) a 𝑡 em 𝐽 . Emerge dessa noção de um vetor

ser tangente a uma curva a indagação sobre se, dado um campo vetorial, podemos encontrar curvas

a que esse campo tangencia. Diz-se que 𝛾 ∶ 𝐽 → 𝑀 é uma curva integral de 𝑋 com início em 𝑝
se 𝛾 (0) = 𝑝 e para todo 𝑡 em 𝐽 valer que 𝛾 ′(𝑡) = 𝑋𝛾 (𝑡). A indagação então encontra uma versão
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precisa na questão da existência de curvas integrais de 𝑋 iniciadas em cada 𝑝. A resposta para isso

é marcante, mais que existirem tais curvas, é possível encontrar uma função que colige a relação de

𝑋 com suas curvas integrais de maneira otimal: o fluxo maximal de 𝑋 .

Denotaremos, em todo o texto, por 𝛑𝑖 a projeção de um produto cartesiano sobre sua 𝑖-ésima

componente. Uma função 𝛷 desde um aberto 𝐷 de ℝ × 𝑀 para 𝑀 é chamada um fluxo em 𝑀 desde

que satisfaça as seguintes condições:

(i) 𝐷 é um domínio de fluxo, isto é, inclui a tira {0} × 𝑀 e se quebra em intervalos abertos da

forma 𝐷𝑚 = 𝛑1(𝛑−12 (𝑚)) para cada 𝑚 em 𝑀 ;

(ii) 𝛷(0, 𝑚) = 𝑚 para todo 𝑚; e

(iii) para todo 𝑚 ∈ 𝑀 , se 𝑠 ∈ 𝐷𝑚, se 𝑡 ∈ 𝐷𝛷(𝑠,𝑚) e se 𝑠 + 𝑡 ∈ 𝐷𝑚, então 𝛷(𝑡, 𝛷(𝑠, 𝑚)) = 𝛷(𝑠 + 𝑡, 𝑚).
Diz-se que 𝑋 gera o fluxo 𝛷 ou que 𝛷 é um fluxo de 𝑋 se para todo ponto 𝑚 a função 𝛷𝑚 ∶ 𝐷𝑚 →
𝑀, 𝑡 ↦ 𝛷(𝑡, 𝑚) é uma curva integral de 𝑋 . Diz-se que o fluxo 𝛷 do campo 𝑋 é maximal se não há

um outro fluxo gerado por 𝑋 que coincida com 𝛷 em 𝐷 e cujo domínio inclua 𝐷 de modo próprio.

A existência de um fluxo maximal para cada campo vetorial suave de uma variedade provém de

que se pode expressar localmente essa questão em cartas, cenário em que o teorema de Picard-

Lindelöf garante a existência de soluções para as equações diferenciais que caracterizam as curvas

integrais e no qual, com um certo empenho analítico, podemos estender os domínios das curvas até

a maximalidade.

3 Fibrados vetoriais suaves

3.1 Fibrados
Há diversos conceitos agrupados sob o nome de fibrados, o qual abarca desde coisas tão simples como

uma mera sobrejeção a coisas bem refinadas como os fibrados vetoriais suaves, a que chegaremos

em breve.

Sejam 𝑀 , 𝐸 e 𝑌 variedades suaves. O espaço 𝑋 é dito um 𝑌 -fibrado suave sobre 𝑀 se estão

estabelecidos os seguintes aspectos:

(i) há uma função suave sobrejetiva 𝜋 ∶ 𝑋 → 𝑀 ; e

(ii) há uma cobertura aberta {𝑈𝛼 }𝛼∈𝐴 de 𝑀 a cada aberto 𝑈𝛼 da qual está associado um difeomor-

fismo 𝜓𝛼 ∶ 𝜋−1(𝑈𝛼 ) → 𝑈𝛼 × 𝑌 tal que 𝛑1 ∘ 𝜓𝛼 = 𝜋 , em que 𝛑1 é a projeção 𝑈𝛼 × 𝑌 → 𝑈𝛼 .

O termo fibrado, em verdade, se emprega para aludir a essa “estruturação” inteira com seus vários

elementos, mas também metonimicamente aos elementos com que ela é montada. Esse é um desses

objetos, comuns em matemática, diante dos quais é difícil poder apontar o que é o objeto em si;

ele é essa “estrutura”. Veremos que, apesar de um pouco impreciso à primeira vista, isso enseja um

linguajar fluido e é contraproducente engessar o termo para que se refira unicamente a 𝐸, ou a 𝜋 ou

à lista (𝜋, 𝐸,𝑀, 𝑌 ). Dispomos, porém, do termo espaço total para nos referirmos especificamente

à variedade 𝐸; de espaço basal para 𝑀 ; de mapa de projeção para 𝜋 ; e de fibra padrão ou fibra
modelo para 𝑌 . Os mapas 𝜓𝛼 são chamados de trivializações locais, entenderemos que esse é um
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bom termo na reflexão que se segue.

A definição apresentada é uma das noções mais básicas de fibrados, mas ela pode ser feita ainda

mais básica exigindo menos: por exemplo, que as variedades sejam só topológicas, que 𝜋 seja só uma

sobrejeção contínua e que os mapeamentos 𝜓𝛼 sejam apenas homeomorfismos. Aí diríamos que

𝜋 ∶ 𝑋 → 𝑀 é um 𝑌 -fibrado topológico ou só um fibrado. O espírito comum dessas duas noções de

fibrado reside em como contrastam com a ideia de um mero produto de espaços. O produto 𝑌×𝑀 , com

a topologia produto, junto da projeção natural 𝛑2 sobre a segunda componente obedecem à definição

de fibrado acima e não o fazem com esforço, mas sim trivialmente. Uma trivialização para um aberto

𝐴 de 𝑌 × 𝑀 é só uma encarnação da injeção 𝐴 ↪ 𝑌 × 𝑀 . A coisa é que 𝜋 ∶ 𝑋 → 𝑀 pode satisfazer

a definição de fibrado sem que 𝑋 seja homeomorfo a 𝑌 × 𝑀 . Felizmente, existe um exemplo de

dimensão baixa o suficiente com objetos topológicos bem conhecidos para que possamos visualizar

isso. A faixa de Möebius (de “largura infinita”) é um fibrado sobre o círculo com fibra modelo ℝ, mas

não é homeomorfo ao cilindro (de “altura infinita”). Ambos, contudo, ao restringirmos o olhar para

bem perto, se assemelham a um produto do espaço base com a fibra modelo.

Já para constituir um fibrado vetorial, é preciso apetrechar um pouco mais essa estrutura. Se

considerarmos que a fibra padrão é um espaço 𝕂-vetorial 𝕍 de dimensão finita (entenda 𝕂 como ℝ
ou ℂ) e que a fibra 𝐸𝑝 ∶= 𝜋−1({𝑝}) de cada ponto 𝑝 de 𝑀 é um espaço vetorial isomorfo a 𝕍, temos

um fibrado 𝐾-vetorial de fibra padrão 𝕍 se cada 𝜓𝛼 é um isomorfismo 𝕂-linear nas fibras, isto é,

enquanto mapa 𝐸𝑝 → {𝑝} × 𝕍 é um isomorfismo 𝕂-linear. A lembrança do objeto global que cons-

truímos na discussão dos espaços tangentes a uma variedade não é à toa, o exemplo primordial de

um fibrado vetorial é o fibrado tangente de uma variedade. Na próxima subseção, nos capacitaremos

de obter muitos exemplos também naturais a partir de um fibrado vetorial arbitrário.

Considere agora dois fibrados 𝕂-vetoriais (𝐸,𝑀, 𝜋, 𝕍) e (𝐹 ,𝑀, 𝜌,𝕎) sobre a mesma variedade

𝑀 . Um mapa suave 𝛯 ∶ 𝐸 → 𝐹 é dito um morfismo de fibrados 𝕂-vetoriais se ele preserva as

fibras (𝜌 ∘𝛯 = 𝜋 ) e é linear nelas. Se quiséssemos falar em morfismos entre fibrados sobre variedades

disintas 𝑀 e 𝑁 teríamos de tratar de mais um mapa 𝜉 ∶ 𝑀 → 𝑁 e exigir 𝜉 ∘ 𝜋 = 𝜌 ∘ 𝛯 antes

da linearidade em fibras. Encontraremos, sobretudo, morfismos do primeiro tipo. Dado um espaço

vetorial𝕍, sempre podemos considerar um fibrado sobre𝑀×𝕍 sobre𝑀 cuja projeção é simplesmente

𝛑1. Denotamos esse fibrado por 𝕍𝑀̲ e, frequentemente, omitimos o subescrito. Dizemos de um

fibrado vetorial 𝐸 de fibra modelo 𝕍 que ele é trivial se há um isomorfismo de fibrados vetoriais

desse fibrado com 𝕍̲.

As trivializações locais de um fibrado vetorial dão origem a outros mapas que codificam os

dados desse fibrado, e é até uma abordagem comum definir um fibrado vetorial a partir desses mapas.

Como trivializações 𝜓𝛼 e 𝜓𝛽 dão isomorfismos lineares no nível das fibras, podemos definir o mapa

𝜓𝛼𝛽 ∶ 𝑈𝛼 ∩ 𝑈𝛽 → GL(𝕍) definindo 𝜓𝛼𝛽(𝑥), para cada 𝑥 em 𝑈𝛼 ∩ 𝑈𝛽 , conforme o seguinte diagrama
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comutativo:

{𝑥} × 𝕍 𝐸𝑥 {𝑥} × 𝕍

←

1{𝑥}×𝜓𝛼𝛽 (𝑥)

←𝛷𝛼←𝛷𝛽 .
Nos referimos a esses mapas 𝜓𝛼𝛽 como os mapas de colagem do fibrado vetorial 𝐸.

3.2 Fibrados vetoriais derivados de um fibrado vetorial
O estudo dos fibrados vetoriais e outros estudos que dependam do conceito de fibrado vetorial são

especialmente profícuos se a descrição dos objetos que vão aparecendo é feita usando fibrados veto-

riais relacionados e seções de tais fibrados, objetos que apresentaremos em breve. Dado um espaço

vetorial 𝕍 há numerosos espaços vetoriais derivados dele: 𝕍∗, 𝕍 ⊗ 𝕍∗, 𝛬𝕍, etc; dado um fibrado

vetorial 𝐸, há contrapartidas para cada um desses tipos de espaços vetoriais derivados: 𝐸∗, 𝐸 × 𝐸∗,

𝛬𝐸, etc.

A obtenção desses outros espaços vetoriais é codificada por meio de funtores suaves da ca-

tegoria 𝒞 de espaços vetoriais de dimensão finita para ela mesma, que são funtores Θ tais que, para

quaisquer dois objetos 𝕍 e 𝕎, a função que Θ induz desde Hom(𝕍,𝕎) para Hom(Θ𝕍,Θ𝕎) pondo

𝐿 ↦ Θ𝐿 é uma função suave (requerimento que faz sentido já que os espaços Hom tem estrutura

suave natural por serem espaços vetoriais de dimensão finita). Para algumas construções precisamos

considerar funtores suaves contravariantes ou funtores que partam de 𝒞 × 𝒞 para 𝒞. Ainda assim,

tudo se dá de forma análoga.

Vamos exibir o processo para un funtor suave Θ covariante e um fibrado vetorial (𝐸,𝑀, 𝜋, 𝕍)
com um atlas de fibrado {(𝑈𝛼 , 𝜓𝛼 )}𝛼∈𝐴. Como cada fibra 𝐸𝑥 é um espaço vetorial, pode-se tomar a

imagem dela por Θ e definir o espaço total do novo fibrado como Θ𝐸 ∶= ⨆𝑥∈𝑀 Θ𝐸𝑥 . Denote por 𝜌
a projeção sobre 𝑀 . Vamos agora atribuir a Θ𝐸 um atlas de fibrado. A restrição de um mapa 𝜓𝛼 a

uma fibra 𝐸𝑥 dá um isomorfismo linear 𝜓𝛼,𝑥 ∶ 𝐸𝑥 → {𝑥} ×𝕍. Como um funtor preserva ismorfismos,

𝛩𝜓𝛼,𝑥 ∶ Θ𝐸𝑥 → Θ({𝑥} × 𝕍) ≃ {𝑥} × Θ𝕍 é um isomorfismo linear. Podemos então montar o atlas

de Θ𝐸 com cartas (𝑈𝛼 , ̃𝜓𝛼 ), definindo ̃𝜓𝛼 ∶ 𝜌−1(𝑈𝛼 ) → 𝑈𝛼 × Θ𝕍, 𝑣 ↦ Θ𝜓𝛼,𝜌(𝑣)(𝑣). A topologia em

Θ𝐸, que advém da de 𝐸 mediante os mapeamentos 𝜓−1𝛼 , é aquela gerada pela coleção dos conjuntos
̃𝜓−1𝛼 (𝑊 ) para todo 𝛼 e para todo aberto 𝑊 de 𝑈𝛼 × Θ𝕍.

Hom(𝕍,𝕍) Hom(Θ𝕍,Θ𝕍)

GL(𝕍)

𝑈𝛼𝛽

←Θ
↩

←𝜑𝛼𝛽 ← 𝜑̃𝛼𝛽 ∶= 𝛑2∘𝜑̃𝛼 ∘𝜑̃−1𝛽

O pedido de que Θ seja um funtor suave serve à con-

firmação de que as cartas são de fato suavemente compa-

tíveis, o que se vê pelo diagrama ao lado. Os mapas de

colagem 𝜓𝛼𝛽 ∶ 𝑈𝛼 ∩ 𝑈𝛽 → GL(𝕍) são suaves já que são

compostas de funções suaves.

É, de forma geral, simples a verificação de que os funtores associados à construção em nível de

espaço vetorial dos fibrados derivados que encontraremos são mesmo suaves. Por exemplo, o funtor

que leva 𝕍 no seu dual 𝕍∗ e 𝐿 ∶ 𝕍 → 𝕎 na sua adjunta 𝐿∗ é linear e contínuo enquanto função

Hom(𝕍,𝕎) → Hom(𝕍∗,𝕎∗), logo, é suave.
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3.3 Seções e formas diferenciais
Diz-se que um mapa suave 𝑠 ∶ 𝑀 → 𝑋 é uma seção suave do 𝑌 -fibrado suave 𝜋 ∶ 𝑋 → 𝑀 se

𝑠 designa para cada ponto da variedade um elemento da fibra, precisamente, 𝜋 ∘ 𝑠 = 1𝑀 . Especial

interesse desperta o conceito de seção aplicado a fibrados vetoriais logo que se vislumbram os vários

objetos úteis que podem ser definidos de modo simples como seções do fibrado ou de algum dos

fibrados que dele derivam. Denotamos o espaço de todas as seções suaves do fibrado 𝑋 como Γ(𝑋).
Uma seção 𝑠 de um fibrado vetorial 𝐸 atribui a cada ponto 𝑝 de 𝑀 um vetor 𝑒 da fibra 𝐸𝑝 . Se

𝐸 é o fibrado tangente de 𝑀 , isso é precisamente no que consiste um campo vetorial. Um outro

tipo importante de seção de um fibrado associado naturalmente a 𝑀 são as formas diferenciais,

com as quais nos familiarizaremos agora. Elas, assim como os campos vetoriais, são uma classe de

objetos que podem realizar-se como seções e estão intrínsecamente associados à variedade. Ocorre,

entretanto, que a estrutura algébrica dessa classe de objetos é bem mais requintada.

Algo que, tanto oferece uma das justificativas ao estudo das formas diferencias, quanto sur-

preende no decurso desse estudo é o préstimo das formas diferenciais para generalizarem a ideia de

funções integráveis escalares em ℝ𝑛 para o contexto de variedades. Não vamos explorar isso po-

rém. O serviço principal que as formas diferenciais terão a chance de nos prestar ocorrerá quando

estivermos definindo conexões e curvaturas nos fibrados principais.

Em um espaço vetorial 𝕍 podemos considerar funcionais lineares 𝑓 ∶ 𝕍 → ℝ, que são elemen-

tos de𝕍∗. Bom, aqui podemos considerar seções do fibrado cotangente T∗𝑀 . Uma seção 𝜔 ∈ Γ(T∗𝑀)
pode ser vista como um mapa T𝑀 → ℝ que que manda vetores 𝑣𝑝 de cada espaço tangente T𝑝𝑀 para

𝜔𝑝𝑣𝑝 , isto é, 𝜔 atua como funcional linear no nível de cada espaço tangente. Dizemos que uma seção

𝜔 de T∗𝑀 é uma 1-forma em 𝑀 . Podemos, porém, considerar formas que recebem mais de um argu-

mento tomando seções dos fibrados exteriores e dos fibrados simétricos. Uma seção 𝜔 ∈ Γ(Λ𝑘T∗𝑀)
é dita uma 𝑘-forma exterior em 𝑀 ; uma seção 𝜔 ∈ Γ(S𝑘T∗𝑀) é dita uma 𝑘-forma simétrica.

Acontece, contudo, que no empreendimento de estabelecer uma teoria de cálculo nas varieda-

des são as formas antisimétricas, as formas exteriores, que se revelam fundamentais. Essa é uma das

razões pelas quais, o nome 𝑘-formas diferenciais, ou ainda só 𝑘-formas, passou a ser muito usado

para aludir às formas exteriores. Sempre que falarmos numa forma diferencial ou simplesmente

numa forma, estaremos pensando nessas que são antisimétricas. Denotaremos por 𝛺𝑘(𝑀) o espaço

de todas as 𝑘-formas em 𝑀 ; consideramos também o caso 𝑘 = 0, pro qual 𝛺0(𝑀) ∶= 𝐶∞(𝑀). Por

𝛺·(𝑀) denotamos o espaço fruto da soma direta ⨁∞
𝑘=0 𝛺𝑘(𝑀), que, em verdade, só acontece até que

𝑘 atinja a dimensão de 𝑀 , já que a potência exterior de um espaço vetorial é nula quando de grau

maior do que a dimensão do espaço.

Um outro tipo importante de seções são as que têm valores em espaços vetoriais e se obtêm

tomando seções de fibrados vetorias que são produto tensorial de fibrados sobre uma mesma varie-

dade. Para ver isso precisamente, considere sobre 𝑀 um fibrado vetorial 𝐸. Dizemos que uma seção

𝜔 do fibrado Λ𝑘T∗𝑀 ⊗𝐸 é uma 𝑘-forma em𝑀 a valores em 𝐸, ou uma 𝐸-𝑘-forma em 𝑀 . Perceba

que poderiamos também considerar seções dos tipos acima não só em 𝑀 mas também no próprio
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espaço total 𝐸 de um fibrado suave sobre 𝑀 . Por exemplo, seções de T𝐸 ou de Λ𝑘T∗𝐸 ⊗𝕎, sendo

𝕎 um espaço vetorial. Voltemos, porém, às 𝑘-formas em 𝑀 para contemplarmos mais coisas.

O produto exterior ∧ no nível da álgebra exterior Λ𝕍 = ⨂∞
𝑘=0 Λ𝑘𝕍 de um espaço vetorial 𝕍

induz o produto exterior de formas em uma variedade. Dadas formas 𝜔 ∈ 𝛺𝑘(𝑀) e 𝜂 ∈ 𝛺ℓ(𝑀), a

forma𝜔∧𝜂 é uma (𝑘+ℓ)-forma definida como𝜔∧𝜂 ∶ 𝑝 ↦ 𝜔𝑝∧𝜂𝑝 . Com esse produto, o conjunto𝛺·(𝑀)
de todas as formas exteriores em 𝑀 é um álgebra graduada. Assim como para formas diferenciais

em ℝ𝑛, há um operador d em 𝛺·(𝑀) chamado também de derivada exterior que produz de uma

𝑘-forma 𝜔 uma (𝑘 + 1)-forma d𝜔. Uma maneira de entender d é como uma gama de operadores

d𝑘 ∶ 𝛺𝑘(𝑀) → 𝛺𝑘+1(𝑀). No caso 𝑘 = 0, 𝑑 coincide com T, isto é, dada uma função 𝛼 ∈ 𝐶∞(𝑀),
d𝛼 é o mapa tangente T𝛼 ∶ T𝑀 → ℝ. Esse caso 𝑘 = 0 é inclusive um dos motivos para ser comum

usar d para o mapa tangente, em contraste com nossa escolha que foi a de marcar o caráter funtorial

de T. Numa perspectiva axiomática, o espaço 𝛺·(𝑀) das 𝑘-formas pode ser definido como o espaço

gerado a partir de 𝛺0(𝑀) = 𝐶∞(𝑀) por estas três operações:

• a operação binária + de adição que faz de 𝛺·(𝑀) um grupo abeliano,

• a operação binária ∧ que é associativa, e

• a operação unária d,

as quais estão sujeitas às seguintes condições, nas quais 𝑓 é uma função suave qualquer e 𝜂 é uma

forma qualquer obtida por meio das operações:

(i) d e ∧ distribuem-se sobre a adição;

(ii) d(d𝑓 ) = 0 ;

(iii) d𝑓 ∧ d𝑓 = 0 ;

(iv) d(𝑓 ∧ 𝜂) = d𝑓 ∧ 𝜂 + 𝑓 ∧ d𝜂 ; e

(v) d(d𝑓 ∧ 𝜂) + d𝑓 ∧ d𝜂 = 0.

Dos axiomas, extrai-se essa série de propriedades: se 𝜂 é uma 𝑘-forma e 𝜔 é uma ℓ-forma, d𝜂 é uma

(𝑘 + 1)-forma, 𝜔 ∧ 𝜂 é uma (𝑘 + ℓ)-forma; dd𝜂 = 0 para toda forma 𝜂; se 𝜂 é uma 𝑘-forma para um 𝑘
ímpar, 𝜂 ∧ 𝜂 = 0; 𝜔 ∧ 𝜂 = (−1)𝑘ℓ𝜂 ∧ 𝜔; e d(𝜔 ∧ 𝜂) = d𝜔 ∧ 𝜂 + (−1)ℓ𝜔 ∧ d𝜂 se 𝜔 é uma ℓ-forma.

3.4 Conexões e curvatura relativa a uma conexão
A ideia por trás da primeira definição de conexão que apresentaremos é a de, em ℝ𝑛, derivar um

campo na direção de outro. Dado um vetor 𝑣 ∈ ℝ𝑛, a derivada direcional de uma função escalar

𝑓 ∈ 𝐶∞(ℝ) é definida sem problemas, ponto a ponto, como o limite (𝐷𝑣𝑓 )(𝑝) ∶= lim𝑡→0 (𝑓 (𝑝 + 𝑡𝑣) −
𝑓 (𝑝))/𝑡 . Podemos estender essa definição para um campo vetorial suave 𝑌 em ℝ𝑛, visto como função

ℝ𝑛 → ℝ𝑛, estabelecendo (𝐷𝑣𝑌 )𝑝 ∶= lim𝑡→0(𝑌𝑝+𝑡𝑣 − 𝑌𝑝)/𝑡 para cada 𝑝. Podemos dar ainda mais um

passo e definir, dado um outro campo 𝑋 , o campo 𝐷𝑋 𝑌 fazendo com que em cada 𝑝 ∈ ℝ𝑛 ele assuma

o valor de 𝐷𝑋𝑝𝑌 em 𝑝. A derivada direcional 𝐷𝑋 𝑌 enquanto mapa 𝔛(ℝ𝑛) × 𝔛(ℝ𝑛) → 𝔛(ℝ𝑛) dispõe

das seguintes propriedades: é 𝐶∞(𝑀)-linear em 𝑋 ; é ℝ-linear em 𝑌 e obedece a regra de Leibniz

𝐷𝑋 (𝑓 𝑌 ) = (𝑋𝑓 )𝑌 + 𝑓𝐷𝑋 𝑌 .

Em uma variedade 𝑀 , não conseguimos definir uma derivada de 𝑌 na direção do vetor 𝑋𝑝
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porque não conseguimos comparar o valor de 𝑌 num ponto 𝑝 com o valor de 𝑌 num ponto 𝑞 perto de

𝑝. Não há maneira canônica de identificar os espaços tangentes T𝑝𝑀 e T𝑞𝑀 e obter uma definição

para 𝑌𝑞 − 𝑌𝑝 . Sai-se desse impasse fazendo a definiçao de conexão a partir das propriedades da

derivada direcional. Uma conexão afim ∇ em 𝑀 é um mapa ∇ ∶ 𝔛(𝑀) × 𝔛(𝑀) → 𝔛(𝑀) que (i) é

𝐶∞(𝑀)-linear no primeiro argumento, (ii) é ℝ-linear no segundo argumento e (iii) satisfaz a regra

de Leibniz ∇𝑋 (𝑓 𝑌 ) = (𝑋𝑓 )𝑌 + 𝑓 ∇𝑋 𝑌 .

Repare que podemos enxergar ∇ como um mapa 𝔛(𝑀) → Γ(T∗𝑀 ⊗ T𝑀) fixando o primeiro

argumento, a imagem de um campo 𝑋 é a forma ∇𝑋 a valores em T𝑀 , a qual, por sua vez, podemos

enxergar como um mapa T𝑀 → T𝑀 . No que definiremos a seguir, entenda ∇𝑋∇𝑌 como a composta

de ∇𝑋 com ∇𝑌 . Define-se a curvatura 𝑅 relativa a ∇ como 𝑅(𝑋 , 𝑌 ) = ∇𝑋∇𝑌 −∇𝑌∇𝑋 −∇[𝑋 ,𝑌 ]. Mostra-

se que a curvatura 𝑅(𝑋 , 𝑌 )𝑍 é 𝐶∞(𝑀)-linear em 𝑋 , em 𝑌 e em 𝑍 .

Podemos levar a noção de conexão para um fibrado vetorial suave 𝐸 sobre 𝑀 . Uma conexão ∇
no fibrado vetorial 𝐸 é um mapa ∇ ∶ 𝔛(𝑀) → Γ(𝐸∗ ⊗ 𝐸) que (i) é ℱ-linear e (ii) satisfaz a regra

de Leibniz: ∇𝑋 (𝑓 𝑠) = (𝑋𝑓 )𝑠 + 𝑓 ∇𝑋 𝑠 para 𝑠 ∈ Γ(𝐸) e 𝑓 ∈ 𝐶∞(𝑀). Como antes, podemos definir a

curvatura 𝑅 relativa a ∇ como 𝑅(𝑋 , 𝑌 ) = ∇𝑋∇𝑌 − ∇𝑌∇𝑋 − ∇[𝑋 ,𝑌 ], fórmula em que enxergamos ∇𝑋
e ∇𝑌 como mapas 𝐸 → 𝐸.

4 Operadores ℱ-lineares e morfismos de fibrados vetoriais

Suponha que 𝐸 e 𝐹 sejam dois fibrados vetoriais sobre 𝑀 e denote 𝐶∞(𝑀) por ℱ. Dizemos que um

mapa linear 𝐿 ∶ Γ(𝐸) → Γ(𝐹) é um operador local de 𝐸 para 𝐹 se ocorre que, sempre que uma

seção 𝑠 ∈ Γ(𝐸) se anula em todo um aberto 𝑈 de 𝑀 , a seção 𝐿𝑠 ∈ Γ(𝐹) também se anula em todo esse

aberto. Já se isso ocorre ponto a ponto, isto é, é válido que sempre que a seção 𝑠 se anula num ponto

𝑝 em 𝑀 , a seção 𝐿𝑠 se anula em 𝑝, dizemos que 𝐿 é um operador pontual.

Mostra-se a seguinte propriedade que dá mais razão ao nome operadores locais: todo operador

local 𝐿 ∶ Γ(𝐸) → Γ(𝐹) induz, dado um aberto 𝑈 de 𝑀 , um mapa 𝐿𝑈 ∶ Γ(𝐸|𝑈 ) → Γ(𝐸|𝑈 ), chamado

de restrição de 𝐿 a 𝑈 , que é o único pro qual vale que 𝐿𝑈 (𝑠|𝑈 ) = (𝐿𝑠)|𝑈 para toda seção 𝑠 de 𝐸.

Mostra-se que os mapas ℱ-lineares 𝐿 ∶ Γ(𝐸) → Γ(𝐹) são locais e que suas restrições a abertos 𝑈
são também ℱ-lineares. Com isso e usando referenciais locais, mostra-se que, mais que locais, tais

mapas ℱ-lineares são pontuais.

Há uma correspondência entre os morfismos de fibrados 𝜑 ∶ 𝐸 → 𝐹 e os mapas ℱ-lineares

Γ(𝐸) → Γ(𝐹). Para vislumbrarmos isso, considere a função que leva o morfismo de fibrados 𝜑 ∶
𝐸 → 𝐹 no mapa 𝜑′ ∶ Γ(𝐸) → Γ(𝐹), 𝑠 ↦ 𝜑 ∘ 𝑠. Para verificar a sobrejetividade, nota-se que, dado um

mapa ℱ-linear 𝐿 ∶ Γ(𝐸) → Γ(𝐹), para cada 𝑥 em 𝑀 , podemos construir uma transformação linear

𝜑𝑥 ∶ 𝐸𝑥 → 𝐹𝑥 definindo, para cada 𝑒 em 𝐸𝑥 , que 𝜑𝑥(𝑒) ∶= (𝐿𝑠)𝑥 para qualquer seção 𝑠 de 𝐸 tal que

𝑠𝑥 = 𝑒. Isso não depende da escolha de 𝑠, pois se 𝑡 é uma outra seção que vale 𝑒 em 𝑥 temos que

(𝑠 − 𝑡)𝑝 = 0 e, como 𝐿 é pontual, 𝐿(𝑠 − 𝑡)𝑥 = (𝐿𝑠)𝑥 − (𝐿𝑡)𝑥 = 0, logo, (𝐿𝑠)𝑥 = (𝐿𝑡)𝑥 . Constrói-se

então o morfismo de fibrados 𝜑 que manda 𝑒 ∈ 𝐸𝑥 para 𝜑𝑥(𝑒) e pro qual temos 𝜑′ = 𝐿. Para verificar
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a injetividade, tomemos morfismos 𝜑 e 𝜓 de 𝐸 em 𝐹 tais que 𝜑′ = 𝜓 ′. Para cada 𝑥 em 𝑀 e cada 𝑒 em

𝐸𝑥 , pegue uma seção 𝑠 que valha 𝑒 em 𝑥 . Temos 𝜑(𝑒) = 𝜑 ∘ 𝑠(𝑥) = (𝜑′𝑠)𝑥 = (𝜓 ′𝑠)𝑥 = 𝜓 ∘ 𝑠(𝑥) = 𝜓(𝑒).
Logo, 𝜓 = 𝜑, do que segue a injetividade.

5 Grupos de Lie

5.1 Definições básicas
Eis mais uma ocasião em que incrementaremos uma objeto com que já somos familiares ganhando

uma estrutura mais rica. Podemos enxergar um grupo de Lie como uma variedade a que se conferiu a

qualidade algébrica de um grupo, mas também como um grupo em cujo comportamento se percebeu

suavidade. Bom, um grupo 𝐺 se trata de um grupo de Lie se podemos nele considerar uma estrutura

de variedade segundo a qual a operação de multiplicação 𝜇 ∶ 𝐺 × 𝐺 → 𝐺 e o mapa de inversão

𝜄 ∶ 𝐺 → 𝐺 são funções suaves. Na mesma toada, os morfismos de grupos suaves são os a que nos

referimos como morfismos de grupos de Lie. Há alguns exemplos fundamentais de morfismos de

grupos de Lie que são também difeomorfismos:

• As translações à esquerda, 𝐿𝑔 ∶ 𝑥 ↦ 𝑔𝑥 , são difeomorfismos. A suavidade decorre de que

se pode escrever 𝐿𝑔 como combinação de funções suaves: 𝑎 ↦ (𝑔, 𝑎) ↦ 𝑔𝑎. Como 𝑔−1𝑔𝑎 = 𝑎,

a translação 𝐿𝑔−1 é uma inversa suave para 𝐿𝑔 , logo, 𝐿𝑔 é um difeomorfismo. E, é claro, o

universo só é um lugar seguro porque as translações à direita 𝑅𝑔 ∶ 𝑥 ↦ 𝑥𝑔 também são.

• O mapa de inversão 𝜄 também é, já que 𝜄 é suave e é inversa de si mesma.

• E, por fim, as conjugações 𝐶𝑔 também são, tendo em vista que 𝐶𝑔 se pode escrever como

composta de difeomorfismos: 𝐶𝑔 = 𝐿𝑔 ∘ 𝑅𝑔−1 .
Esses difeomorfismos tanto são importantes para entender a topologia dos grupos de Lie (enquanto

homeomorfismos), quanto o são por ensejar uma série de construções naturais que faremos à frente.

Dada uma função suave 𝑓 ∶ 𝑀 → 𝑁 , dizemos que campos 𝑋 ∈ 𝔛(𝑀) e 𝑌 ∈ 𝔛(𝑁 ) são 𝑓 -
relacionados se para cada 𝑚 ∈ 𝑀 valer que (T𝑚𝑓 )𝑋𝑚 = 𝑌𝑓 (𝑚). Por 𝐺 ser uma variedade, podemos

considerar campos vetoriais em 𝐺. Entre os campos vetoriais de 𝐺, há uma classe especial: a dos

campos que são 𝐿𝑔-relacionados a si mesmos, os quais chamamos de campos invariantes à es-
querda. É imediato ver que a soma de dois campos invariantes à esquerda está 𝐿𝑔-relacionada a si

mesma já que o mapa tangente é linear nas fibras de 𝑇𝑀 e que o campo vetorial nulo é relacionado

a si próprio. Isso faz da coleção de todos esses campos, que denotamos por 𝔤, um subespaço vetorial

de 𝔛(𝐺) e, mais ainda, 𝔤 é fechado sob o colchete de Lie. Em vista disso, nos referimos ao espaço 𝔤
dos campos invariantes à esquerda de 𝒢 como a álgebra de Lie do grupo de Lie 𝐺.

Há uma outra propriedade muito importante da coleção de todos os campos invariantes à es-

querda, ela é inteiramente catalogada pelo espaço tangente de 𝐺 na identidade 𝑒, ou seja, o valor que

um campo invariante à esquerda assume na identidade dá de saber o valor assumido em todos os

demais pontos de 𝐺. Essa correspondência se substancia no mapa de avaliação 𝜀 que é simplesmente

o mapa desde 𝔤 a T𝑒𝐺 que manda 𝑋 no seu valor 𝑋𝑒 na identidade e se trata de uma bijeção. Vamos
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fazer essa demonstração.

Já que 𝜀 é linear, a injetividade vem simplesmente de que seu núcleo é trivial: se 𝑋𝑒 = 0,

temos que 𝑋 é nulo em todo 𝑔, pois T𝑒𝐿𝑔 é linear e, de que 𝑋 , é invariante à esquerda temos que

T𝑒𝐿𝑔𝑋𝑒 = 𝑋𝐿𝑔𝑒 = 𝑋𝑔 . Provar que 𝜀 é sobrejetivo requer-nos um pouco mais de escrita. Tome uma

derivação 𝑣 no codomínio 𝑇𝑒𝐺 de 𝜀. O campo vetorial ̄𝑣 definido como 𝑔 ↦ 𝑇𝑒𝐿𝑔𝑣 assume o valor

𝑣 em 𝑒 e é invariante à esquerda: 𝑇𝑔𝐿ℎ ̄𝑣𝑔 = 𝑇𝑔𝐿ℎ𝑇𝑒𝐿𝑔 ̄𝑣𝑒 = 𝑇𝑒(𝐿ℎ ∘ 𝐿𝑔) ̄𝑣𝑒 = 𝑇𝑒𝐿𝑔ℎ ̄𝑣𝑒 = 𝑇𝑒𝐿𝑔ℎ𝑣 = ̄𝑣𝑔ℎ.

Para ver que 𝕍 é suave, usaremos uma caracterização equivalente para a suavidade de um campo

que é a de operar em funções suaves gerando funções suaves. Fixe uma 𝑓 ∈ 𝐶∞(𝐺) e note que

( ̄𝑣𝑓 )(𝑔) = ̄𝑣𝑔𝑓 = (𝑇𝑒𝐿𝑔𝑣)𝑓 = 𝑣(𝑓 ∘ 𝐿𝑔). Podemos calcular o valor de 𝑣 em 𝑓 ∘ 𝐿𝑔 por meio de

curvas. Tome uma curva suave 𝛾 ∶ (−𝛿, +𝛿) → 𝐺 tal que 𝛾 (0) = 𝑒 e 𝛾 ′(0) = 𝑣 . Temos que

𝑣(𝑓 ∘ 𝐿𝑔) = d
d𝑡 (𝑓 ∘ 𝐿𝑔 ∘ 𝛾 )𝑡=0 . A derivada de 𝑓 ∘ 𝐿𝑔 ∘ 𝛾 em 𝑡 = 0 coincide com a derivada parcial

desta função ̃𝜓 ∶ (−𝛿, +𝛿)×𝐺 → ℝ(𝑡, 𝑔), (𝑡 , 𝑥) ↦ 𝑓 ∘𝐿𝑥 ∘ 𝛾 (𝑡) em relação 𝑡 em (𝑡, 𝑥) = (0, 𝑔). Como 𝜓
se escreve compondo e tomando produto de funções suaves, 𝜓 = 𝑓 ∘ 𝜇 ∘ (𝛾 × 1𝐺), sua derivada parcial

𝜑𝑡 é uma função suave e, portanto, 𝜑𝑡 |𝑡=0 = ̄𝑣𝑓 também é. Concluimos então que T𝑒𝐺 é isomorfo a 𝔤.
Aplicando a ideia de fluxos aos campos invariantes à esquerda, podemos de maneira natural

definir uma aplicação de 𝔤 em 𝐺. Simbolizando por 𝐗 o fluxo maximal de um campo 𝑋 , pode-

mos definir o mapa exponencial de 𝐺 como exp ∶ 𝔤 → 𝒢, 𝑋 ↦ 𝐗(1, 𝑒). Ao denotarmos

exp(𝑋) como 𝑒𝑋 e vale a propriedade agradavelmente familiar: 𝑒(𝑠+𝑡)𝑋 = 𝑒𝑠𝑋 𝑒𝑡𝑋 para 𝑠, 𝑡 ∈ ℝ.

𝔤 T𝑒𝐺 T ̃𝑒𝐺̃ 𝔤̃

𝐺 𝐺̃

←exp
←∼ ←

T𝑒𝑓
←∼

←ẽxp

← 𝑓

Temos também que 𝑔𝑒𝑡𝑋 = 𝔛(𝑡, 𝑔) e, o que solidifica a naturalidade

de exp, que, dado um morfismo de grupos de Lie 𝑓 ∶ 𝐺 → 𝐺̃, vale o

diagrama comutativo ao lado.

5.2 Representações
Dado um grupo 𝐺 e um espaço vetorial 𝕍 chamamos a um morfismo de grupos 𝐺 → GL(𝕍) de

uma representação de grupo de 𝐺 em 𝕍. Acontece que o grupo de automorfismos de um espaço

vetorial pode ser encarado como um grupo de Lie e aí, se 𝐺 é um grupo de Lie, podemos considerar

representações de grupos de Lie, morfismos 𝐺 → GL(𝕍) de grupos de Lie.

Para reparar que GL(𝕍) é uma variedade, podemos injetar GL(𝕍) em ℝ𝑛2 como uma subvarie-

dade aberta. Com uma escolha de base para𝕍 e pondo 𝑛 ∶= dim𝕍, se identificam𝕍 eℝ𝑛 e constrói-se

um isomorfismo desde GL(𝕍) às matrizes invertíveis GL(𝑛, ℝ). Tendo em vista que GL(𝑛, ℝ) é um

aberto do espaço 𝕄(𝑛) de matrizes quadradas de ordem 𝑛 – por ser a pré-imagem do aberto ℝ ⧵ {0}
pelo mapa do determinante –, e que 𝕄(𝑛) é um grupo de Lie por sua identificação canônica com ℝ𝑛2 ,
podemos conceder a GL(𝑉 ) a estrutura suave que faz da injeção GL(𝕍) ⥲ GL(𝑛, ℝ) ↪ 𝕄(𝑛) ⥲ ℝ𝑛2
um mergulho.

Ante que todo grupo de Lie 𝐺 tem um espaço vetorial 𝔤 que lhe é especial, é natural tentar cons-

truir uma representação Ad do grupo 𝐺 em sua própria álgebra de Lie, a qual chamamos represen-
tação adjunta de 𝐺. Mediante a identificação canônica T𝑒𝐺 ⥲ 𝔤 pelo mapa de avaliação 𝜀 ∶ 𝔤 → 𝐺,

podemos identificar cada transformação 𝐿 que está em GL(T𝑒𝐺) com uma transformação 𝜀−1 ∘ 𝐿 ∘ 𝜀.
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Além disso, dado um 𝑔 em 𝐺, o mapa tangente T𝑒𝐶𝑔 é um isomorfismo, visto que as conjugações são

difeomorfismos. Define-se então Ad da seguinte maneira: Ad ∶ 𝐺 → GL(𝔤), 𝑔 ↦ 𝜀−1 ∘ (T𝑒𝐶𝑔) ∘ 𝜀 e

se pode mostrar que Ad é efetivamente um morfimos de grupos. Denotaremos Ad(𝑔) =∶ Ad𝑔 .

5.3 Ação de grupos de Lie
Um outro aspecto que é importante entendermos para seguirmos rumo aos fibrados principais, é o

de como podem os grupos agir sobre conjuntos. Uma ação à direita de um grupo 𝐺 em um conjunto

𝑋 é um mapa ◁ ∶ 𝑋 × 𝐺 → 𝑋, (𝑥, 𝑔) ↦ 𝑥 ◁ 𝑔 tal que 𝑥 ◁ 𝑒 = 𝑥 e (𝑥 ◁ 𝑔) ◁ ℎ = 𝑥 ◁ (𝑔ℎ). Se 𝐺 for

um grupo Lie e 𝑋 for uma variedade, com a condição a mais de que ◁ seja suave, dizemos que essa

é uma ação suave à direita. Com frequência suprimiremos os símbolo que denota a ação.

Instituída uma ação de 𝐺 em 𝑋 , podemos falar em alguns subconjuntos de 𝐺 e de 𝑋 especi-

ais para cada ponto 𝑥 em 𝑋 . O subgrupo de estabilizadores ou o estabilizador de 𝑥 é o con-

junto Stab(𝑥) ∶= 𝐺𝑥 ∶= {𝑔 ∈ 𝐺 | 𝑥𝑔 = 𝑥}. Já a órbita de 𝑥 é o conjunto Orb(𝑥) ∶= 𝑥𝐺 ∶= {𝑦 ∈
𝑋 | ∃𝑔 ∈ 𝐺(𝑥𝑔 = 𝑦)}. Há um resultado simples que expõe a relação entre a órbita e o subgrupo

de estabilizadores de um ponto, o teorema órbita-estabilizador. Fixe um ponto 𝑥 e defina a função

𝜒 ∶ 𝐺 → 𝑋, 𝑔 ↦ 𝑥𝑔, cuja imagem é a órbita 𝑥𝐺 de 𝑥 . Note a seguinte sucessão de condições

equivalentes: 𝜒(𝑔) = 𝜒(ℎ) ⇔ 𝑥𝑔 = 𝑥ℎ ⇔ 𝑥 = 𝑥(ℎ𝑔−1) ⇔ ℎ𝑔−1 ∈ 𝐺𝑥 ⇔ ℎ ∈ 𝐺𝑥𝑔, de que concluimos

que as classes laterais do estabilizador 𝐺𝑥 são precisamente as fibras de 𝜒 . Concluimos assim, que

𝜒 , ou ainda, o próprio ponto 𝑥 , define uma bijeção natural 𝐺/𝐺𝑥 ⥲ 𝑥𝐺, [𝑔] ↦ 𝑥𝑔.

Dizemos de uma ação que ela é livre se, sempre que 𝑥𝑔 = 𝑥ℎ, valer que 𝑔 = ℎ. Equivalente-

mente, nunca ocorrre 𝑥𝑔 = 𝑥 , a não ser que 𝑔 = 𝑒. Já o termo transitiva empregamos para dizer que

para todo par de pontos 𝑥 e 𝑦 se encontra um elemento 𝑔 do grupo que leva um ao outro: 𝑥𝑔 = 𝑦 .

Se 𝐺 age em um conjunto 𝑋 e em um conjunto 𝑌 , dizemos que uma funão 𝑓 ∶ 𝑋 → 𝑌 é 𝐺-
equivariante se para todos 𝑔 e ℎ em 𝐺 e todo 𝑥 em 𝑋 valer que 𝑓 (𝑥 ◁ 𝑔) ◁ ℎ = 𝑓 (𝑥 ◁ (𝑔ℎ)).

Uma importante ação suave que nasce do que já fizemos é a ação de um grupo de Lie 𝐺 em sua

álgebra de Lie 𝔤 por meio da representação adjunta, que se define como 𝔤 × 𝐺 → 𝔤, (𝑋 , 𝑔) ↦ Ad𝑔𝑋 .

6 Fibrados principais

6.1 Definições básicas
Seja 𝐺 um grupo de Lie. Podemos falar em fibrados suaves cuja fibra modelo seja 𝐺 enquanto con-

junto; suponha, assim, que 𝜌 ∶ 𝑃 → 𝑀 seja um 𝐺-fibrado suave. Dizemos que esse fibrado é um

fibrado principal desde que satisfaça estas duas condições:

(i) está definida uma ação de 𝐺 em 𝑃 que é suave e é livre; e

(ii) as trivializações locais 𝜓 ∶ 𝜌−1(𝑈 ) → 𝑈 ×𝐺 de 𝑃 são 𝐺-equivariantes, entendendo-se em 𝑈 ×𝐺
a ação que fixa a primeira componente e multiplica a segunda, (𝑥, 𝑔) ◁ ℎ = (𝑥, 𝑔ℎ).

Dessa definição, se extrai logo uma outra propriedade importante: 𝐺 age transitivamente nas fibras

de 𝜌. Isso porque 𝐺 age transitivamente em {𝑥} × 𝐺 e uma trivialização 𝜓 restrita à fibra de 𝑥 é um

mapa 𝑃𝑥 → {𝑥} × 𝐺 equivariante.
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Cabe ainda destacar mais um traço do comportamento de 𝐺 em relação ao espaço total 𝑃 , a

ação de 𝐺 em 𝑃 induz uma ação de 𝐺 no fibrado tangente. Sempre que se estabelece uma ação suave

numa variedade, isso se dá por consequência. Definindo 𝑟𝑔 como o mapa que representa a ação de

um elemento 𝑔, isto é, 𝑟𝑔 ∶ 𝑃 → 𝑃, 𝑝 ↦ 𝑝 ◁ 𝑔, podemos considerar que 𝐺 age em T𝑃 mandando

(𝑔, 𝑌𝑝) para (T𝑝𝑟𝑔)𝑌𝑝 . Será conveniente a sucinta notação 𝑔∗𝑌𝑝 ∶= (T𝑝𝑟𝑔)𝑌𝑝 .
𝑃 𝑄

𝑀 𝑁

←𝜌

←𝐹

←𝜂

←𝑓

Sejam 𝜌 ∶ 𝑃 → 𝑀 e 𝜂 ∶ 𝑄 → 𝑁 𝐺-fibrados principais suaves. Um mapa suave

𝐹 ∶ 𝑃 → 𝑄 é um morfismo de fibrados principais se 𝐹 é 𝐺-equivariante e existe

𝑓 ∶ 𝑀 → 𝑁 suave tal que 𝑓 ∘ 𝜌 = 𝜂 ∘ 𝐹 .

6.2 Fibrado de referenciais
Um dos principais exemplos de fibrados principais é o fibrado de referenciais de um fibrado vetorial.

Fixemos um fibrado vetorial 𝜋 ∶ 𝐸 → 𝑀 de fibra modelo 𝕍 de dimensão 𝑛 e construamos o seu

fibrado de referenciais 𝜌 ∶ Fr 𝐸 → 𝑀 , que é um fibrado GL(𝕍)-principal.

Dada uma lista 𝐛 = (𝑏1, ..., 𝑏𝑛) de 𝑛 vetores de 𝕍, se o conjunto de suas entradas constituir uma

base para 𝕍, dizemos que essa lista, essa base ordenada, é um referencial para 𝕍. Denotamos o

esbaço de todos os referenciais de 𝕍 por Fr𝕍. Há uma ação natural de GL(𝕍) em Fr(𝕍) que é livre

e transitiva dada por 𝐿𝐛 = (𝐿𝑏1, ..., 𝐿𝑏𝑛) para 𝐿 ∈ GL(𝕍) e 𝐛 ∈ Fr(𝕍). Fixe uma base 𝐞 de 𝕍. Por

a ação ser livre, GL(𝕍)/Stab(𝐞) ≃ GL(𝕍); por ser transitiva, Orb(𝐞) = Fr(𝕍). Isso nos dá então

uma bijeção 𝜒 ∶ GL(𝕍) → Fr(𝕍), 𝐿 ↦ 𝐿𝐞 e com ela podemos atribuir uma estrutura suave a

Fr𝕍. Essa elaboração se aplica também a cada fibra 𝐸𝑥 do fibrado vetorial de modo que podemos

definir o espaço total Fr 𝐸 como a união disjunta ⨆𝑥∈𝑀 Fr 𝐸𝑥 e 𝜌 como a projeção natural sobre 𝑀 .

As cartas (𝑈 , 𝜓 ) de 𝐸 induzem as cartas (𝑈 , ̃𝜓 ) de Fr𝐸. Definimos ̃𝜓 mapeando cada 𝐛𝑥 ∈ 𝐸𝑥 para

(𝑥, (𝜓 (𝑏1), … , 𝜓 (𝑏𝑛))). A ação de 𝐺 em Fr𝐸 é definida como 𝐛 ◁ 𝐿 = ̃𝜓−1(𝑥, 𝐿(𝜓 (𝑏1), … , 𝜓 (𝑏𝑛))) e se

verifica que é independente de cartas.

6.3 Campos vetoriais fundamentais, o fibrado vertical e distribuições horizontais
A cada campo vetorial invariante à esquerda, podemos associar um campo vetorial no espaço total

do fibrado principal. Faz-se isso assim: para cada 𝑋 em 𝔤, defina o campo 𝑋 ∶ 𝑃 → T𝑃 pondo

𝑋𝑝 ∶= d
d𝑡 (𝑝 ◁ 𝑒𝑡𝑋 )𝑡=0. O lado direito dessa igualdade é de fato um vetor, repare que 𝑝 ◁ 𝑒𝑡𝑋 é uma

curva suave e 𝑋𝑝 é o vetor tangente dela em 𝑡 = 0. O campo que resulta dessa construção é, de

fato, suave e são justamente as curvas 𝑝 ◁ 𝑒𝑡𝑋 as suas curvas integrais com início em cada 𝑝. Isso

se codifica num mapa natural 𝜎 ∶ 𝔤 → 𝔛(𝑃), 𝑋 ↦ 𝑋 . Veremos adiante que o subespaço de 𝔛(𝑃)
imagem desse mapa linear já é especial meramente em relação à estrutura de fibrado suave de 𝑃 .

Pela conversa do fibrado principal 𝜌 ∶ 𝑃 → 𝑀 com fibrado tangente de 𝑀 , podemos destacar

uma porção do fibrado tangente do fibrado principal. Fixe um ponto 𝑝 em 𝑃 e considere o mapa

tangente T𝑝𝜌 ∶ T𝑝𝑃 → T𝜌(𝑝)𝑀 da projeção 𝜌 do fibrado principal no ponto 𝑝. Definindo V𝑝𝑃 como

o núcleo de T𝑝𝜌, ganhamos a seguinte sequência exata:

0 → V𝑝𝑃 ↪ T𝑝𝑃
T𝑝𝜌−−−→ T𝜌(𝑝)𝑀 → 0
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e somos impelidos a definir o subfibrado V𝑃 ∶= ⨆𝑝∈𝑃 V𝑝𝑃 , que é um fibrado trivial sobre 𝑃 . Esse

fibrado chamamos de o fibrado vertical de 𝑃 . Observe que não fizemos nenhum uso da estrutura

de fibrado principal de 𝑃 , essa construção se aplica a qualquer fibrado suave.

Veremos agora que os campos fundamentais são verticais em todo lugar. Um campo funda-

mental 𝑋 ser vertical é ele estar no núcleo de T𝑝 . Para podermos verificar isso, fixemos um 𝑝 ∈ 𝑃 ,

denotemos por 𝑗𝑝 a função 𝐺 → 𝑃, 𝑔 ↦ 𝑝 ◁ 𝑔 e reparemos no seguinte. É possível calcular 𝑋
de uma forma alternativa a que usamos para definir o campo vetorial fundamental associado a um

campo invariante à esquerda 𝑋 . Aplicando o mapa tangente de 𝑗𝑝 na identidade a 𝑋𝑒 temos que

T𝑒𝑗𝑝𝑋𝑒 = d
d𝑡 (𝑗𝑝( 𝑒𝑡𝑋 ))𝑡=0 = d

d𝑡 (𝑝 ◁ 𝑒𝑡𝑋 )𝑡=0 = 𝑋𝑝 e fica visível que o mapa 𝜎 é linear de fato. Com

essa maneira de calcular 𝑋𝑝 temos que T𝑝𝜌𝑋𝑝 = (T𝑝𝜌 ∘ T𝑒𝑗𝑝)𝐴 = T𝑝(𝜌 ∘ 𝑗𝑝)𝐴. Como 𝐺 age fibra a

fibra, o mapa 𝜌 ∘ 𝑗𝑝 tem que ser constante e, portanto, T𝑝(𝜌 ∘ 𝑗𝑝)𝐴 = 0 e 𝑋 é vertical.

A análise da ação de 𝐺 em cada ponto 𝑝 por meio do mapa 𝑗𝑝 nos diz mais que só que os

campos fundamentais são verticais, em verdade, para cada 𝑝 em 𝑝, o mapa tangente T𝑒𝑗𝑝 dá um

isomorfismo natural entre a álgebra de Lie 𝔤 e o espaço tangente vertical V𝑝𝑃 . A demonstração

disso segue a seguinte linha. Um campo fundamental 𝑋 se anula num ponto 𝑝 se, e só se, ele

está na álgebra de Lie 𝔏(𝐺𝑝) do subgrupo de estabilizadores de 𝑝. Isso porque se 𝑋 ∈ 𝔏(𝐺𝑝), o

subgrupo uniparamétrico 𝑒𝑡𝑋 está contido todo em 𝐺𝑝 e aí 𝑋𝑝 é nulo, pois 𝑝 ◁ 𝑒𝑡𝑋 é constante; e

se, reversamente, 𝑋𝑝 é 0, então temos duas curvas integrais 𝑝 e 𝑝 ◁ 𝑒𝑡𝑋 para 𝑋 com início em 𝑝 e

daí, por unicidade, 𝑒𝑡𝑋 tem que estabilizar 𝑝. Disso extraimos que o núcleo de T𝑒𝑗𝑝 é a álgebra de

Lie do subgrupo de estabilizadores de 𝑝. Como a ação é livre, 𝐺𝑝 é só {𝑒} e o núcleo 𝔏(𝐺𝑝) de T𝑒𝑗𝑝
é trivial e T𝑒𝑗𝑝 é injetivo. Da sequência exata que obtivemos acima, temos que a dimensão de V𝑝𝑃
é dim 𝑇𝑝𝑃 − dim 𝑇𝜌(𝑝)𝑀 = (dim𝐺 + dim𝑀) − dim𝑀 = dim𝐺 = dim T𝑒𝐺 = dim 𝔤 e, portanto, T𝑒𝑗𝑝
também é sobrejetor. Isso nos enseja enxergar o fibrado veritcal V𝑃 também como o fibrado vetorial

trivial 𝔤𝑃̲ de fibra modelo 𝔤. Fixemos, consistentemente, 𝑗∗ ∶ 𝔤𝑃̲ → V𝑃 como o isomorfismo entre

esses dois fibrados.

Uma distribuição numa variedade é um subfibrado do fibrado tangente. À luz da existência

natural do fibrado vertical de 𝑃 , podemos definir as distribuições horizontais em 𝑃 como aquelas

distribuições 𝐻 que, em soma direta com o fibrado vertical, compõem T𝑃 , isto é , T𝑃 = 𝒱𝑝 ⊕ 𝐻 .

Fixada uma distribuição horizontal 𝐻 , podemos falar em componentes verticais e componentes ho-

rizontais de um vetor por meio das projeções naturais 𝑣 ∶ T𝑃 ↠ V𝑃 e ℎ ∶ T𝑃 ↠ 𝐻 da soma direta.

Note que, à despeito de que os vetores verticais se destaquem independentmente de uma distribuição

horizontal, falar em componente vertical depende de saber a componente horizontal. A distribui-

ção horizontal estabelece uma “direção” de projeção sobre o fibrado vertical. Veremos que o tipo

mais desejável de distribuição horizontal num fibrado principal são as distribuições horizontais
invariantes que se caracterizam por serem estáveis sob a ação de 𝐺 em T𝑃 .

Considere um vetor vertical em 𝑇𝑝𝑃 sugestivamente denotado por 𝐴𝑝̲ . Podemos estendê-lo a

um campo fundamental 𝐴̲, pois T𝑒𝑗𝑝 enquanto mapa 𝔤 ≃ T𝑒𝐺 → V𝑝𝑃 é bijetivo e então o campo

fundamental que tem valor 𝐴𝑝̲ em 𝑝 é uma extensão vertical natural para esse vetor. Fixada uma
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distribuição horizontal 𝐻 , podemos fazer algo semelhante para um vetor horizontal em 𝑝.

6.4 Conexões e distribuições horizontais invariantes
Vamos formalizar a ideia de conexão no contexto de fibrados principais e observar que há uma re-

lação entre implementar uma conexão e estipular uma distribuição horizontal complementar ao fi-

brado vertical. Uma conexão em 𝑃 será uma uma 1-forma com valores em 𝔤 com certas propriedades

e, faremos emergirem essas propriedades construindo uma 𝔤-1-forma a partir de uma distribuição

horizontal invariante.

Considere no fibrado 𝜌 ∶ 𝑃 → 𝑀 uma distribuição horizontal 𝐻 tal que, para todo 𝐵𝑝 em 𝐻 ,

o vetor 𝑔∗𝐵𝑝 ainda esteja em 𝐻 , ou seja, uma distribuição horizontal invariante sob a ação de 𝐺 em

T𝑃 . Recordando que dispomos do mapa 𝑗 ∶ 𝔤𝑃̲ → V𝑃 e, fixada 𝐻 , do mapa 𝑣 ∶ T𝑃 ↠ V𝑃 , podemos

construir em 𝑃 a 𝑔-1-forma 𝜔 como sendo 𝑗−1 ∘ 𝑣 ao enxergar 𝜔 como um mapa T𝑃 → 𝔤, isto é, ela

é a forma que delega a cada vetor o elemento da álgebra de Lie relativo à sua componente vertical

segundo a distribuição horizontal 𝐻 . Verifica-se que essa forma 𝜔 possui estas duas propriedades:

(i) 𝜔(𝐴̲𝑝) = 𝐴 para todo 𝐴 ∈ 𝔤 e todo 𝑝 ∈ 𝑃 ; e

(ii) 𝜔 ∘ 𝑔∗ = Ad−𝑔 ∘ 𝜔 para todo 𝑔 em 𝐺.

Definiremos uma conexão simplesmente como uma forma com tais propriedades. Diz-se que uma

forma 𝜔 ∈ Γ(T∗𝑃 ⊗ 𝔤𝑃̲) é uma conexão principal em 𝑃 se (i) ela remete os campos fundamentais

aos campos invariantes à esquerda (𝜔𝐴̲ = 𝐴); e (ii) ela é 𝐺-equivariante enquanto mapa T𝑃 → 𝔤. A

primeira propriedade definidora de uma conexão 𝜔 já ilumina como 𝜔 dá origem a uma distribuição.

Se tivéssemos um mapa 𝑣 ∶ T𝑃 ↠ 𝑀 , essa propriedade poderia refraseada dizendo que 𝜔 coincide

com 𝑣 ∘ 𝑗−1∗ enquanto mapa T𝑃 → 𝔤, tendo em vista que 𝑣 mandaria um campo fundamental 𝐴̲ (que

é vertical) nele mesmo e 𝑗−1∗ identificá-lo-ia, em cada 𝑝, com o elemento 𝐴 de 𝔤 ≃ 𝔤𝑝̲ de quem é o

campo fundamental.

Visto que 𝑣 se anularia nos campos horizontais conforme sua respectiva distribuição horizon-

tal, inclinamo-nos a definir 𝐻 ∶= ker𝜔 = ⨆𝑝∈𝑃 ker𝜔𝑝 como a distribuição associada a 𝜔 com a

esperança de que ela seja horizontal e invariante e que, realmente, 𝜔 seja a forma construída com

o mapa 𝑗 e o mapa 𝑣 , providenciado por 𝐻 , como fizemos anteriormente. Essa esperança se con-

cretiza e ficamos com uma bonita correspondência. Dada uma distribuição horizontal invariante 𝐻 ,

constrói-se uma conexão principal 𝜔 pondo 𝜔 = 𝑗−1∗ ∘ 𝑣 da qual 𝐻 é o núcleo. Dada uma conexão

principal 𝜔, o seu núcleo 𝐻 é uma distribuição horizontal invariante tal que 𝜔 = 𝑗−1∗ ∘ 𝑣 .

6.5 Curvatura e fibrados associados
A definição de curvatura num fibrado principal se faz a partir de uma conexão principal. Dada uma

conexão principal 𝜔 em 𝜌 ∶ 𝑃 → 𝑀 , a forma de curvatura 𝛺 associada a 𝜔 é uma 𝔤-2-forma

𝛺 ∈ Γ(Λ2𝑇 ∗𝑀 ⊗ 𝔤)̲ dada por 𝛺 = d𝜔 + 1
2[𝜔, 𝜔]. Mostra-se que a forma de curvatura possui as

seguintes três propriedades

• 𝛺 é horizontal, no seguinte sentido: em cada T𝑝𝑃 , para quaisquer 𝑋𝑝 e 𝑌𝑝 em T𝑝𝑃 , vale que

𝛺(𝑋𝑝 , 𝑌𝑝) = d𝜔(ℎ𝑋𝑝 , ℎ𝑌𝑝), o que implica que 𝛺 se anula em campos verticais.
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• 𝛺 é 𝐺-equivariante, no seguinte sentido: para qualquer 𝑔 em 𝐺, 𝑔∗𝛺 = Ad𝑔
−1𝛺, em que se

deve entender 𝑔∗𝛺 como 𝛺 ∘ (𝑔∗ × 𝑔∗).
• 𝛺 satisfaz a segunda identidade de Bianchi, d𝛺 = [𝛺, 𝜔].

Podemos também compreender 𝛺 com uma seção de um outro fibrado, um associado a 𝑃 que iremos

construir.

Suponha que 𝜅 ∶ 𝐺 → GL(𝕍) seja uma representação de 𝐺 num espaço vetorial 𝕍 e, por

brevidade, denotemos 𝜅(𝑔)𝑣 por 𝑔𝑣 . Definimos o fibrado 𝐸 sobre 𝑀 como o produto fibrado 𝑃 ×𝜅 𝕍,

explicitamente, o quociente de 𝑃 × 𝑉 pela relação de equivalência (𝑝, 𝑣) ∼ (𝑞, 𝑤) ⇔ ∃𝑔 ∈ 𝐺((𝑝, 𝑣) =
(𝑝𝑔, 𝑔−1𝑣)). Como a ação de 𝐺 em 𝑃 se dá fibra a fibra, temos o mapa de projeção 𝜏 ∶ 𝑃 ×𝜅 𝕍 → 𝑀
que manda uma classe [𝑝, 𝑣] em 𝑝. Chamamos 𝜏 ∶ 𝑃 ×𝜅𝕍 → 𝑀 de o fibrado associado de 𝑃 relativo
à representação 𝜅. Ele é de fato um fibrado e, mais que isso, um fibrado vetorial. Podemos definir

cada trivialização ̃𝜓 para 𝐸 a partir de cada carta (𝑈 , 𝜓 ) de 𝑃 . O mapa ̃𝜓 manda pontos 𝑝 em 𝑃 para

pares (𝑢, 𝑔) em 𝑈 ×𝐺. É possível definir um difeomorfismo canônico 𝑓 ∶ (𝑈 ×𝐺)×𝜅𝕍 → 𝕍 enviando

a classe [(𝑥, 𝑔), 𝑣] em (𝑥, 𝑔𝑣). A definição não depende de representantes, pois 𝑓 ([(𝑥, 𝑔)ℎ, ℎ−1𝑣]) =
(𝑥, 𝑔ℎℎ−1𝑣) = (𝑥, 𝑔𝑣) = 𝑓 ([(𝑥, 𝑔), 𝑣]). A inversa de 𝑓 é aquela que manda (𝑥, 𝑣) na classe [(𝑥, 𝑒), 𝑣].
A função ̃𝜓 ∶ 𝜏−1(𝑈 ) = 𝜌−1(𝑈 ) ×𝜅 𝕍 → 𝑈 × 𝕍 se define por ̃𝜓 ([𝑝, 𝑣]) ∶= 𝑓 ([𝜓 (𝑝), 𝑣]). Além disso,

em cada fibra 𝐸𝑥 , as operações de espaço vetorial são induzidas de 𝕍, isto é, aplica-se 𝜓 , opera-se

em {𝑥} × 𝕍 e aí retorna-se aplicando 𝜓−1. Com essas definições, o fibrado associado 𝐸 = 𝑃 ×𝜅 𝕍
se configura como um fibrado vetorial sobre 𝑀 . Chamamos de fibrado adjunto de P o fibrado

associado a 𝑃 relativo à representação adjunta Ad e o representamos por Ad(𝑃).
Dizemos que uma 𝕍-𝑘-forma 𝜂 em 𝑃 é de tipo 𝜅 se 𝑔∗𝜂 = 𝜅(𝑔−1)𝜂, nessa expressão devemos

entender 𝑔∗𝜂 = 𝜂 ∘∏𝑘
𝑘=1 𝑔𝑘 , isto é, 𝑔∗𝜂 opera em campos 𝑋1, ..., 𝑋𝑘 dando 𝜂(𝑔∗𝑋1, ..., 𝑔∗𝑋𝑘). Dizemos

que uma 𝑘-forma a valores vetoriais ou escalares 𝜂 em 𝑃 é horizontal se 𝜂(𝑋1, ..., 𝑋𝑘) = 0 sempre

que um dos argumentos é vertical. Veremos que há uma correspondência entre as 𝕍-𝑘-formas ho-

rizontais de tipo 𝜅 em 𝑃 e as 𝑘-formas em 𝑀 a valores no fibrado associado 𝐸 relativo a 𝜅. A forma

de curvatura 𝛺 associada à conexão ∇ em 𝑃 é horizontal de tipo Ad e corresponderá então a uma

𝐸-𝑘-forma. Denotemos por 𝛺𝑘𝜅 (𝑃, 𝕍) o conjunto das 𝕍-𝑘-formas horizontais de tipo 𝜅.

Com uma escolha de ponto 𝑝 em 𝑃𝑥 , a fibra 𝐸𝑥 do fibrado associado pode ser identificada com

𝕍 por meio do mapa 𝑝∗ ∶ 𝕍 → 𝐸𝑥 , 𝑣 ↦ [𝑝, 𝑣]. Dada uma forma 𝜂 em 𝛺𝑘𝜅 (𝑃, 𝕍) podemos construir

uma 𝐸-𝑘-forma 𝜂♭ em 𝑀 assim. Dados 𝑚 ∈ 𝑀 e 𝑣1, ..., 𝑣𝑘 ∈ T𝑚𝑀 , tome um ponto 𝑝 em 𝑃𝑥 e tome

vetores 𝑢1, ..., 𝑢𝑘 em T𝑝𝑃 tais que 𝑇𝑝𝜌(𝑢𝑖) = 𝑣𝑖; definimos 𝜂♭(𝑣1, ..., 𝑣𝑛) ∶= 𝑝∗ ∘ 𝜂(𝑢1, ..., 𝑢𝑘). Mostra-se

que essa definição não depende nem da escolha de 𝑝 e nem das escolhas de levantamento 𝑢𝑖 para

𝑣𝑖. Na outra direção, se 𝜆 pertence a 𝛺𝑘(𝑀, 𝐸), dados 𝑝 ∈ 𝑃 e 𝑢1, ..., 𝑢𝑛 ∈ T𝑝𝑃 , define-se a forma

𝜆♯ ∈ 𝛺𝑘𝜅 (𝑃, 𝕍) pondo 𝜆♯(𝑢1, ..., 𝑢𝑘) = 𝑝−1∗ (𝜆(T𝑝𝜌 𝑢1, ...,T𝑝𝜌 𝑢1)). Da definição, é imediato que 𝜆♯ é

horizontal e se verifica que é de tipo 𝜅. Feito isso, sabe-se que os mapas ♭ ∶ 𝛺𝑘𝜅 (𝑃, 𝕍) → 𝛺𝑘(𝑀, 𝐸) e

♯ ∶ 𝛺𝑘(𝑀, 𝐸) → 𝛺𝑘𝜅 (𝑃, 𝕍) estão bem definidos e verifica-se que são inversos, isto é, que há de fato

uma correspondência.

Por haver essa correspondência, quando 𝑘 = 2 e 𝜅 é a representação adjunta de 𝐺, temos em
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particular o que anunciáramos: que a curvatura 𝛺, que é uma 2-forma em 𝑃 a valores em 𝔤, pode

ser vista como uma 2-forma em 𝑀 a valores no fibrado adjunto Ad(𝑃) = 𝑃 ×Ad 𝔤.

7 Considerações finais

Apresentamos, de forma abreviada, a teoria genérica de variedades suaves, abordando funções sua-

ves, fibrado tangente, campos vetoriais e fluxos. Depois disso, exploramos a teoria básica dos fibra-

dos vetoriais suaves, expondo as ideias a respeito de fibrados derivados obtidos por meio de funtores

suaves, tratando os conceitos de seções, formas diferenciais, conexões e curvatura e estabelecendo a

correspondência entre operadores 𝐶∞(𝑀)-lineares e morfismos de fibrados. Passamos então a uma

exposição sobre grupos de Lie, ações de grupo e representações de grupo. Vimos então o que são

os fibrados principais e que neles há naturalmente a ideia de vetores verticais, a qual leva a uma

noção de conexão no fibrado principal. Há uma correspondência entre a escolha de uma conexão

e a de uma distribuição invariante complementar ao fibrado vertical. Fixar uma forma de conexão

enseja definir as componentes vertical e horizontal de cada vetor tangente ao fibrado principal e

uma noção de curvatura relativa a essa conexão. Vimos, por fim, que dada uma representação do

grupo modelo do fibrado principal em um espaço vetorial, emerge o conceito de fibrado associado,

com o qual podemos enxergar a forma de curvatura como uma forma na variedade base a valores no

fibrado associado. Isso porque, nestas circunstâncias, há uma correspondência entre as formas no

fibrado principal a valores nesse espaço vetorial e as formas na variedade base a valores no fibrado

associado relativo a essa representação.

Os passos seguintes no percurso rumo ao Teorema de Atiyah-Singer, que devem ser dados numa

próxima etapa desse estudo, são explorar a teoria dos operadores 𝐶∞(𝑀)-lineares – apreendendo os

conceitos de operadores diferenciais elípticos e símbolos desses operadores –, e explorar a teoria de

classes características no nível de fibrados vetoriais e de fibrados principais com vistas a, com um

entendimento sólido do enunciado do teorema, aprender uma de suas demonstrações.
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