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Um percurso rumo ao teorema de Atiyah-Singer

Resumo

O projeto do qual resulta esse trabalho teve por objetivo o estudo dos pré-requisitos do te-
orema de Atiyah-Singer para que, depois, uma demonstracdo do teorema fosse estudada. Aqui
apresentamos, de forma abreviada, uma significativa parcela dos conceitos e resultados matema-
ticos necessarios a enunciacdo e demonstragio do teorema, os quais foram abordados no decorrer
do projeto de conclusdo de curso e ndo esgotam o contetido tedrico requerido pelo teorema. A
porcao coberta desse conteldo abrange os seguintes assuntos que serdo apresentados: varie-
dades suaves; estrutura tangente de variedades suaves; funcdes suaves, submersdes, imersdes
e mergulhos; fluxos e curvas integrais; grupos de Lie e suas algebras de Lie; fibrados vetoriais
suaves; secOes de fibrados vetoriais e formas diferenciais; conexdes afins em fibrados vetori-
ais; curvatura em fibrados vetoriais; fibrados principais; conexdes e distribui¢ées em fibrados
principais; curvatura em fibrados principais; e fibrados associados.

1 Introducio

O teorema de Atiyah-Singer é um dos mais marcantes resultados em geometria obtidos no século XX.
Grosso modo, o teorema lida com sistemas de equacdes diferenciais. O indice analitico associado a
um sistema de equacdes diferenciais consiste na diferenca entre o numero de parametros necessarios
para descrever todas as solucdes e o niimero de relagdes existentes entre as equacdes do sistema. A
primeira vista, pode parecer tdo dificil calcular o indice analitico quanto encontrar as solucdes do
sistema. O teorema de Atiyah-Singer mostra justamente que nao é o caso, porque o indice analitico
efetivamente é determinado s6 pela topologia dos espagos envolvidos. Destacamos ainda que varios
outros teoremas notaveis da geometria sdo casos particulares do teorema de Atiyah-Singer (por
exemplo, o teorema de Riemann-Roch, o teorema de Gauss-Bonnet e o teorema da assinatura de
Hirzebruch).

Suponha que M seja uma variedade compacta sem bordo orientada, que E e F sejam fibrados
vetoriais suaves sobre M, e que D seja um operador diferencial eliptico de E para F. O indice analitico
ind,(D) do operador D é a diferenca dimker D — dim cokerD entre as dimensdes de seu nucleo e
de seu conucleo. O teorema de Atiyah-Singer diz que o indice analitico ind,(D) é igual ao indice
topologico indy(D) = JM ch(D)Td(M).

Em nosso projeto de conclusdo, ndo chegamos até o estudo da demonstracdo em si, mas per-
corremos uma extensdo do trajeto até o teorema e é apresenta-la o objetivo desse trabalho. Cabe
ressaltar mais um aspecto que delimita esse trabalho. Do esforco requerido para desenvolver a teoria
necessaria para o teorema de Atiyah-Singer, uma parte significativa se emprega na construcio con-
sistente de uma série de conceitos sofisticados e na articulacdo desses varios conceitos construidos,
alguns inclusive de que se fez uso na explicacdo acima. Decidiu-se dedicar esse trabalho sobretudo a
apresentacdo desse aspecto, sem que nos detenhamos em exibir minuciosamente as demonstracoes
de que as construcdes estdo bem definidas, de que certos objetos existem e de que certas proprie-

dades valem. Ha muito valor nesse segundo aspecto e ele foi abordado no decurso do projeto de



conclusdo, entretanto, pareceu mais propicio a elaboragdo desse documento conforme o modelo da
monografia a abordagem segundo o primeiro aspecto.

Comecaremos com algumas defini¢cdes fundamentais relacionadas a variedades suaves. Em se-
guida, apresentaremos a ideia de fibrados e alguns conceitos relacionados, sobretudo considerando
fibrados vetoriais. Cobriremos entdo o necessario de grupos de Lie a fim de apresentar os fibrados
principais e resultados iniciais do estudo desses fibrados. As notas de aula [1] de Liviu I. Nicolaescu
guiaram a escolha dos topicos a se abordar. Ja no estudo especifico de cada um dos topicos, recor-
remos sobretudo aos livros [2] de Loring W. Tu, [3] de John M. Lee e [4] de Ivan Kolaf,Peter W.
Michor e Jan Slovak. .

2  Variedades suaves

2.1 Defini¢des iniciais

Entre os conceitos fundamentais no caminho para o teorema do indice de Atiyah-Singer esta o de
uma variedade suave. Comecaremos por esse conceito que é material para a construcao de tantos
outros mais sofisticados nesse caminho, como o de fibrados vetoriais suaves e de fibrados principais.
E importante salientar que nesse trabalho o termo “suave” sempre aludira a condicdes de existéncia
e continuidade de todas as derivadas; no caso de uma funcdo R* — R™, entende-se por suave que
todas as derivadas parciais existem e sdo continuas.

Como na definicdo de tantos outros conceitos adiante, a definicdo de variedade suave tenta
abstrair de objetos familiares do contexto de R" caracteristicas o mais intrinsecas possivel a fim
de trabalhar com conceitos que sdo mais gerais sem perda de poder descritivo e obter com eles
resultados mais gerais ou semelhantes, comumente, de maneira menos esforgosa, mais natural.

Considere um espaco topologico M. Diz-se que M é uma variedade suave de dimensao k se

i. M é HausdorfT e tem base enumeravel;
ii. Todo ponto de M tem uma vizinhanga aberta homeomorfa a um aberto de R".
iii. Existe uma cobertura aberta {U;};c; de M para cada aberto U; da qual esta definido um home-
omorfismo ¢; desde U; a um aberto U; em R (leia U como “U breve”).
iv. Para quaisquer U; e U; membros da cobertura, vale que ¢;  ¢; L Ui U) = ¢jUinU)) é
uma funcao suave de inversa suave (um difeomorfismo).
Chamamos aos pares (U, ¢;) de cartas, e nos referimos a duas cartas satisfazerem a propriedade
(iv) dizendo que essas cartas sao compativeis. Diremos que uma carta registra um ponto quando
tal ponto pertence ao aberto dessa carta e nos referiremos as fungdes ¢; (e suas inversas) como
mapeamentos. A colecio das cartas pressupostas para uma variedade suave damos o nome de
atlas. Suprimiremos o termos “suave” e nao faremos mengao a dimenséo de uma variedade, sempre
que o contexto nao pedir ou nio deixar duvida.
Da definicdo de variedade, brota, com certa naturalidade, o entendimento do que sao fungdes

suaves entre variedades. Sendo M e N variedades suaves de dimensdes k e £ (suponha sempre o



“respectivamente” em frases assim), podemos expressar uma fungio f : M — N conforme cartas
em cada uma das variedades e alicercar a nova definicdo na definicdo de suavidade para funcdes
RF - R'. Tome um ponto p em M, uma carta (U, ¢) que registre p e uma carta (W, ) que registre
f(p). Considerando ¢! restrita a (f~'(f(U) n W)) para poder compor f com os mapeamentos,

temos que f := i o f o "' é uma funcéio para a qual a nocéio de suavidade ja esta definida, veja:

—1
RES p(f(fW) aW)) S F(FW) a W) Lo ryaw L cre
Se para qualquer ponto p em M e quaisquer cartas (U, ¢) e (W, /) ajustados como acima, valer que
f é suave, entio diz-se que a propria f é suave. Para além disso, diz-se que f : M — N é um

difeomorfismo se f for suave e tiver uma inversa também suave.

2.2 Vetores tangentes, tipos de mapas suaves e subvariedades

Para tipificar alguns mapas suaves especiais em breve, e para bastantes outras coisas mais adiante,
precisamos trazer de R¥ a ideia de vetores tangentes. Ha algumas maneiras equivalentes de fazer
isso, mas talvez a mais proficua — por conseguir reaplicar-se em contextos nos quais as demais nao
conseguem - seja aquela em que se abstrai dos vetores de R a qualidade de determinar derivadas
direcionais para fun¢des suaves de R para R. Uma outra maneira leva em consideracio classes de
curvas as quais certo vetor é tangente. Parte da relacdo entre vetores tangentes e curvas transpare-
cera quando falarmos em curvas integrais e fluxos.

Fixe um ponto p na variedade M. No espaco de todos os pares (U, a), em que U é um aberto
de M que contém p e o é uma funcido suave desde U a R, define-se esta relacdo de equivaléncia:
U, a) ~ (V, p) se a e B coincidem num aberto incluso em UnV. Chamamos as classes de equivaléncia
de germes de funcées suaves em p e denotamos por [«], a classe correspondente a uma funcio
suave o desde um aberto em torno de p para R. O espago de todos os germes em p é simbolizado
por C;’(M). Uma derivagdo em p é um mapa linear D : Cp’(M) — R que satisfaz a seguinte regra
do produto: D[af], = a(p)v[B], + B(p)Dla],.

Considere M = R¥ e fixe um ponto p. Dado um vetor v em RF, dizemos que um par (p,v) é um
vetor tangente em p (visualize isso como a flecha v apoiada em p) e denotamos o par (p, v) por v,
Podemos entender v, como uma derivagio em p definindo a maneira como atua em germes: v,[a],, =
(%a(p + tv))tzo. Podemos também fazer o inverso, para cada derivacdo D em p, encontrar o vetor
v € Rrtal quev, = D. Dado um germe [«] p» tome um representante (U,a). Comoa : U — Résuave,
podemos escrever a(x) = 0{(p)+JO1 % [a(p + t(x — p))] dt. Denotando por x' e p as componentes de
x e p, ficamos com a(x) = a(p)+2f:1(xi—pi) fol %(aﬂ(x—a))dt = a(p)+2£~c:1(xi—pi)ﬁi(x). Vamos
agora aplicar D a [«] p- Note, de antemao, que, como D segue a regra de Leibniz, D(1)=D(1-1) =
2D(1), o que implica que D(1) = 0 e, por linearidade, que D(a) = 0 para qualquer constante a. Tendo
isso em mente, vemos que D[a], = 0 + D[,Bi]p(pi - )+ ,Bi(p)(D[xi]p -0) = Zle %(p)D[xi]p, 0
que quer dizer que D € a derivacéo v, correspondente ao vetor v := 211'6:1 Dl[x], €, em queey,... ¢

sao os vetores da base candnica. Dessa maneira, em ]Rk, ha uma correspondéncia entre derivacdes



e vetores tangentes, a qual nos encoraja a partir para variedades arbitrarias M s6 com a ideia de
derivacOes para cumprir o papel dos vetores.

Definimos T,M, o espago tangente a M em p, como o espago vetorial de todas as derivacdes
de germes de fungdes suaves em p, as quais chamaremos também de vetores tangentes. Dada uma
fungao suave f : M — N, podemos considerar o mapa tangente de f em p definido como a fungao
linear T, f : T,M — T,)N que manda uma derivagio v para a derivacéo (T, f)v : C}‘E p)(M) -
R, a — v(a o f).

Vamos agora montar o fibrado tangente de M. Denote por TM esta unido disjunta: |_| pem TpM,
epor r : TM - M a projegdo associada. Conferiremos a TM uma topologia e um atlas suave, de
uma maneira natural, usando de material as tais estruturas ja presentes em M. Uma carta (U, ¢) do
atlas de M induz em TM a carta (U, $) em que se define: U = 77 1(U) e ¢ : U — U x qu(p)]Rk =
U x RK, (p, Vp) (o(p), Tpgovp). Ja a topologia de TM é conferida designando como abertos os
subconjuntos A de TM tais que ¢(U n A) é aberto em U x RK para qualquer carta (U, ¢). Dizemos que
TM com toda essa estrutura é o fibrado tangente de M.

Com esse construto que retne os espagos tangentes em cada ponto, se pode definir para func¢oes
suaves f : M — N afuncdosuave Tf : TM — TN, chamada de o mapa tangente total, que manda
cada v, em cada T,M para (T, f)v,. Aludiremos a ele, com frequéncia, puramente como o mapa
tangente. O mapa tangente total goza dessas duas propriedades: (i) denotando por 1, a identidade
M — M e por 17, a identidade TM — TM, temos que T(1,) = 17p; (i) sendo g : N — O
uma funcio suave, T(g o f) = (Tg) o (Tf). As atribuicbes M — TM e f — Tf e as propriedades
mencionadas, configuram um objeto especial a luz da teoria de categorias. Vamos introduzir suas
nogoes basicas: a de categorias e a de funtores.

Uma categoria C consiste de uma colegio de objetos X,Y, Z, ... e uma colecdo de morfismos
f. g h,... que segue estes ditames. Para todo morfismo f, existem dois objetos que sdo chamados de
dominio de f e codominio de f; se eles sdo, respectivamente, X e Y, denota-se f : X — Y. Para
cada objeto X, esta designado o morfismo 1y : X — X que é chamado de morfismo identidade de
X. Dados morfismos f e g, se o codominio de f coincidir com o dominio de g, existe um morfismo
gf cujo dominio é o de f e cujo codominio é o de g, o qual chamamos de morfismo composto ou
composig¢do. Devem ainda ser validos estes dois axiomas:

« Para qualquer morfismo, f : X —» Y, valeque 1y f = fe flx = f.
« Para quaisquer morfismos, f : X ->Y,g:Y > Zeh : Z - W, os morfismos h(gf) e (hg) f
sdo o mesmo morfismo.

Um funtor covariante F desde uma categoria C para uma categoria D consiste nas atribuicdes:
um objeto FX em D para cada objeto X em C; um morfismo Ff : FX — FY em D para cada
morfismo f : X — Y em C, sendo FX e FY as imagens de X e Y por F. Essas atribuicdes estao
sujeitas aos seguintes axiomas de funtorialidade: (Fg)(Ff) = F(gf) e F(1x) = 1px. Os funtores
contravariantes siao aqueles que invertem as direcdes dos morfismos quando aplicados. Em vista de

que as variedades suaves junto com os mapas suaves formam uma categoria, constata-se que T é um



funtor desta categoria para ela mesma. Outras categorias com que nos depararemos sao: a de espacos
vetoriais de dimensdo finita e mapas lineares, e a de fibrados vetoriais com morfismos de fibrados
vetoriais. Nesse trabalho, o uso que faremos da linguagem da teoria de Categorias nao é amplo.
Contudo, ela orienta o atual pensamento sobre a geometria e sobre varias areas da matematica e é o
que nos torna, de uma perspectiva filosofica, propensos a empregar bastantes vezes o termo natural.

Cabe agora definir os tipos especiais de mapas suaves a que se fez mencdo. Uma fungio suave
f + M — N é dita uma submersao quando seu mapa tangente é sobrejetivo em cada ponto de
M, isto €, T, f € sobrejetivo para todo p € M. Ja quando o mapa tangente de f € injetivo em cada
ponto, diz-se que f é uma imersdo. Se além de ser uma imersdo, f é um homeomorfismo sobre
a imagem, diz-se que f é um mergulho. Munidos dessa maneira de qualificar os mapas suaves,
podemos definir o que é uma subvariedade. Ha algumas nog¢des um pouco diversas de o que é uma
subvariedade; e essa diversidade surge da distin¢do no que se espera para os mapas de inclusio e
para as estruturas topoldgicas dos subconjuntos que se quer encarar como subvariedades. Aquelas
de que nos ocuparemos sio as subvariedades mergulhadas que consistem em variedades N que
estdo inclusas em M como conjuntos e para as quais o mapa de inclusio N — M se trata de um

mergulho suave.

2.3 Campos vetoriais, curvas integrais e fluxos

Um campo vetorial X em M é uma funcido X : M — TM que associa a cada ponto p em M um
elemento de T,M que denotamos por X,,. Simbolizamos por X(M) o espaco vetorial de todos os
campos vetoriais suaves, no qual a adicdo e a multiplicacdo por escalares sio definidas fibra a fibra:
X+Y :pw X, +Y,eaX : p+ aX, Como cada X, é uma derivacdo de germes de fungdes
em p, é propicio entender X como um operador em C*(M) que atua mandando a func¢io suave a
para a funcdo suave Xa : M - R, p+— Xp[a] - Também desde o nivel da atuacdo em germes,
dados campos suaves X e Y, define-se o campo [X,Y] : p — Xprf — Ypof que também é suave;
e com isso, se ganha a operacdo binaria [-,-] em ¥(M) chamada de colchete de Lie. Da definicéo
do colchete de dois campos se extrai que ele é uma operagéo bilinear, antisimétrica e que satisfaz a
chamada identidade de Jacobi: [[X,Y], Z] = [X,[Y, Z]] — [[ X, Z],Y]. Assim, provido do colchete de
Lie, o espaco vetorial ¥(M) constitui uma dlgebra de Lie, estrutura algébrica que é justamente um
espago vetorial em que esta definido um produto de vetores que ¢ bilinear, antisimétrico e satisfaz a
identidade de Jacobi.

Vamos explorar a relacdo entre vetores e curvas. Dada uma curvay : J — M desde um
intervalo aberto J, podemos definir de forma natural y’(¢), o vetor tangente a curva y no ponto
y(@). O vetor y’(t) é a derivagdo no ponto y(t) que atribui a cada germe [],, o valor %(a ° y(s)) —
dy
dr
ser tangente a uma curva a indagacéo sobre se, dado um campo vetorial, podemos encontrar curvas

Denotamos por == ou por y’(t) a fungao que associa y’(t) at em J. Emerge dessa noc¢éo de um vetor

a que esse campo tangencia. Diz-se que y : | — M é uma curva integral de X com inicio em p

se y(0) = p e para todo ¢ em J valer que y’(t) = X,(»). A indagaco entdo encontra uma versdo



precisa na questao da existéncia de curvas integrais de X iniciadas em cada p. A resposta para isso
¢ marcante, mais que existirem tais curvas, é possivel encontrar uma fun¢ido que colige a relacdo de
X com suas curvas integrais de maneira otimal: o fluxo maximal de X.

Denotaremos, em todo o texto, por 7; a projecdo de um produto cartesiano sobre sua i-ésima
componente. Uma fun¢do ¢ desde um aberto D de R x M para M é chamada um fluxo em M desde
que satisfaca as seguintes condicdes:

(i) D é um dominio de fluxo, isto é, inclui a tira {0} x M e se quebra em intervalos abertos da
forma D, = nl(ngl(m)) para cada m em M;
(ii) @(0,m) = m para todo m; e
(iii) paratodom € M, ses € Dy, set € Dg(s,m) € s€ s +t € Dy, entdo @(t, d(s, m)) =®(s +t,m).
Diz-se que X gera o fluxo @ ou que @ é um fluxo de X se para todo ponto m a func¢io ™ : D,, —
M, t— @(t,m) é uma curva integral de X. Diz-se que o fluxo @ do campo X é maximal se ndo ha
um outro fluxo gerado por X que coincida com @ em D e cujo dominio inclua D de modo proéprio.
A existéncia de um fluxo maximal para cada campo vetorial suave de uma variedade provém de
que se pode expressar localmente essa questdo em cartas, cenario em que o teorema de Picard-
Lindelof garante a existéncia de solugdes para as equagdes diferenciais que caracterizam as curvas
integrais e no qual, com um certo empenho analitico, podemos estender os dominios das curvas até

a maximalidade.

3  Fibrados vetoriais suaves

3.1 Fibrados
Ha diversos conceitos agrupados sob o nome de fibrados, o qual abarca desde coisas tdo simples como
uma mera sobrejecao a coisas bem refinadas como os fibrados vetoriais suaves, a que chegaremos
em breve.
Sejam M, E e Y variedades suaves. O espaco X ¢é dito um Y-fibrado suave sobre M se estdo

estabelecidos os seguintes aspectos:

(i) ha uma funcio suave sobrejetivaz : X — M;e

(ii) h& uma cobertura aberta {U,},c4 de M a cada aberto U, da qual est4 associado um difeomor-

fismo v, : 7~ }(U,) — U, x Y tal que m; ° §/, = 7, em que 7, é a projecio U, x Y — Uj,.

O termo fibrado, em verdade, se emprega para aludir a essa “estruturacdo” inteira com seus varios
elementos, mas também metonimicamente aos elementos com que ela é montada. Esse é um desses
objetos, comuns em matematica, diante dos quais é dificil poder apontar o que é o objeto em si;
ele é essa “estrutura”. Veremos que, apesar de um pouco impreciso a primeira vista, isso enseja um
linguajar fluido e é contraproducente engessar o termo para que se refira unicamente a E, ou a 7 ou
a lista (r, E, M,Y). Dispomos, porém, do termo espaco total para nos referirmos especificamente
a variedade E; de espaco basal para M; de mapa de projecao para r; e de fibra padrao ou fibra

modelo para Y. Os mapas ¢/, sao chamados de trivializacées locais, entenderemos que esse é um



bom termo na reflexdo que se segue.

A definicédo apresentada é uma das noc¢des mais basicas de fibrados, mas ela pode ser feita ainda
mais basica exigindo menos: por exemplo, que as variedades sejam s6 topoldgicas, que 7 seja s6 uma
sobrejecdo continua e que os mapeamentos ¥, sejam apenas homeomorfismos. Ai diriamos que
m : X - MéumY-fibrado topolégico ou s6 um fibrado. O espirito comum dessas duas nogoes de
fibrado reside em como contrastam com a ideia de um mero produto de espacos. O produto YxM, com
a topologia produto, junto da proje¢ao natural 7, sobre a segunda componente obedecem a definicdo
de fibrado acima e ndo o fazem com esfor¢o, mas sim trivialmente. Uma trivializacdo para um aberto
A deY x M é s6 uma encarnagio da injecdo A = Y x M. A coisa é que 7 : X — M pode satisfazer
a definicdo de fibrado sem que X seja homeomorfo a Y x M. Felizmente, existe um exemplo de
dimensao baixa o suficiente com objetos topoldgicos bem conhecidos para que possamos visualizar
isso. A faixa de Moebius (de “largura infinita”) é um fibrado sobre o circulo com fibra modelo R, mas
nio é homeomorfo ao cilindro (de “altura infinita”). Ambos, contudo, ao restringirmos o olhar para
bem perto, se assemelham a um produto do espaco base com a fibra modelo.

J& para constituir um fibrado vetorial, é preciso apetrechar um pouco mais essa estrutura. Se
considerarmos que a fibra padrao é um espago K-vetorial V de dimensao finita (entenda IK como R
ouC) e que a fibra E,, := 7~ 1({p}) de cada ponto p de M é um espaco vetorial isomorfo a V, temos
um fibrado K -vetorial de fibra padrao V se cada , ¢ um isomorfismo K-linear nas fibras, isto é,
enquanto mapa E, — {p} x V é um isomorfismo K-linear. A lembranca do objeto global que cons-
truimos na discussdo dos espagos tangentes a uma variedade néo ¢é a toa, o exemplo primordial de
um fibrado vetorial é o fibrado tangente de uma variedade. Na préxima subse¢ao, nos capacitaremos
de obter muitos exemplos também naturais a partir de um fibrado vetorial arbitrario.

Considere agora dois fibrados K-vetoriais (E, M, 7, V) e (F, M, p, W) sobre a mesma variedade
M. Um mapa suave = : E — F é dito um morfismo de fibrados K-vetoriais se ele preserva as
fibras (pe = = ) e é linear nelas. Se quiséssemos falar em morfismos entre fibrados sobre variedades
disintas M e N teriamos de tratar de mais um mapa & : M — N e exigir £ e 71 = p o = antes
da linearidade em fibras. Encontraremos, sobretudo, morfismos do primeiro tipo. Dado um espaco
vetorial V, sempre podemos considerar um fibrado sobre MxV sobre M cuja projecio é simplesmente
7. Denotamos esse fibrado por V), e, frequentemente, omitimos o subescrito. Dizemos de um
fibrado vetorial E de fibra modelo V que ele é trivial se ha um isomorfismo de fibrados vetoriais
desse fibrado com V.

As trivializacdes locais de um fibrado vetorial ddo origem a outros mapas que codificam os
dados desse fibrado, e é até uma abordagem comum definir um fibrado vetorial a partir desses mapas.
Como trivializagdes ¥, e Y5 ddo isomorfismos lineares no nivel das fibras, podemos definir o mapa

Yap : Uy nUg = GL(V) definindo ¥, 5(x), para cada x em U, n Up, conforme o seguinte diagrama



comutativo:
1{x}><¢a/3(x)

SN

@ P
(XIxV —— E, —% {x}xV .

Nos referimos a esses mapas , 5 como os mapas de colagem do fibrado vetorial E.

3.2 Fibrados vetoriais derivados de um fibrado vetorial

O estudo dos fibrados vetoriais e outros estudos que dependam do conceito de fibrado vetorial sdo
especialmente proficuos se a descri¢do dos objetos que vao aparecendo é feita usando fibrados veto-
riais relacionados e se¢des de tais fibrados, objetos que apresentaremos em breve. Dado um espago
vetorial V ha numerosos espagos vetoriais derivados dele: V¥,V ® V*, AV, etc; dado um fibrado
vetorial E, ha contrapartidas para cada um desses tipos de espagos vetoriais derivados: E*, E x E*,
AE, etc.

A obtencéo desses outros espagos vetoriais é codificada por meio de funtores suaves da ca-
tegoria C de espagos vetoriais de dimensao finita para ela mesma, que sdo funtores © tais que, para
quaisquer dois objetos V e W, a fun¢io que © induz desde Hom(V, W) para Hom(®V, ©W) pondo
L — OL é uma funcio suave (requerimento que faz sentido ja que os espacos Hom tem estrutura
suave natural por serem espagos vetoriais de dimensao finita). Para algumas construcdes precisamos
considerar funtores suaves contravariantes ou funtores que partam de C x C para C. Ainda assim,
tudo se da de forma analoga.

Vamos exibir o processo para un funtor suave © covariante e um fibrado vetorial (E, M, 7, V)
com um atlas de fibrado {(U,, ¥;)}4ea. Como cada fibra E, é um espaco vetorial, pode-se tomar a
imagem dela por © e definir o espaco total do novo fibrado como OF :=| |,.; ©F,. Denote por p
a projecao sobre M. Vamos agora atribuir a ©F um atlas de fibrado. A restricdo de um mapa ¢/, a
uma fibra E, da um isomorfismo linear ¢, , : E, — {x}x V. Como um funtor preserva ismorfismos,
OYyx * OE, = O({x} x V) = {x} x OV é um isomorfismo linear. Podemos entdo montar o atlas
de ©F com cartas (Uy, V), definindo ¢, : p~'(U,) — U, x OV, v — OV p(v)(v). A topologia em
OF, que advém da de E mediante os mapeamentos i |, é aquela gerada pela colecio dos conjuntos
Yo L (W) para todo a e para todo aberto W de U, x OV.

O pedido de que © seja um funtor suave serve a con- Hom(V, V) o, Hom(OV, OV)

firmacdo de que as cartas sdo de fato suavemente compa- 1

tiveis, o que se vé pelo diagrama ao lado. Os mapas de GL(V)
colagem Y5 : Uy nUg — GL(V) sdo suaves ja que séo a ﬂT Pap = ToPuPp
compf)stas de funcdes suaves. U,

E, de forma geral, simples a verificagdo de que os funtores associados a construcdo em nivel de
espaco vetorial dos fibrados derivados que encontraremos sdo mesmo suaves. Por exemplo, o funtor
que leva V no seu dual V* e L : V — W na sua adjunta L* é linear e continuo enquanto funcéo

Hom(V, W) - Hom(V*, W), logo, é suave.



3.3 Secoes e formas diferenciais

Diz-se que um mapa suave s : M — X é uma secdo suave do Y-fibrado suave 7 : X — M se
s designa para cada ponto da variedade um elemento da fibra, precisamente, 7 o s = 1,;. Especial
interesse desperta o conceito de secdo aplicado a fibrados vetoriais logo que se vislumbram os varios
objetos uteis que podem ser definidos de modo simples como sec¢des do fibrado ou de algum dos
fibrados que dele derivam. Denotamos o espaco de todas as se¢des suaves do fibrado X como I'(X).

Uma secéo s de um fibrado vetorial E atribui a cada ponto p de M um vetor e da fibra E,,. Se
E é o fibrado tangente de M, isso é precisamente no que consiste um campo vetorial. Um outro
tipo importante de se¢io de um fibrado associado naturalmente a M sdo as formas diferenciais,
com as quais nos familiarizaremos agora. Elas, assim como os campos vetoriais, sio uma classe de
objetos que podem realizar-se como se¢des e estdo intrinsecamente associados a variedade. Ocorre,
entretanto, que a estrutura algébrica dessa classe de objetos é bem mais requintada.

Algo que, tanto oferece uma das justificativas ao estudo das formas diferencias, quanto sur-
preende no decurso desse estudo é o préstimo das formas diferenciais para generalizarem a ideia de
funcoes integraveis escalares em R" para o contexto de variedades. Nao vamos explorar isso po-
rém. O servico principal que as formas diferenciais terdo a chance de nos prestar ocorrera quando
estivermos definindo conexdes e curvaturas nos fibrados principais.

Em um espaco vetorial V podemos considerar funcionais lineares f : V — R, que séo elemen-
tos de V*. Bom, aqui podemos considerar se¢des do fibrado cotangente T*M. Uma se¢do w € T'(T* M)
pode ser vista como um mapa TM — R que que manda vetores v, de cada espago tangente T, M para
WpVp, isto €, w atua como funcional linear no nivel de cada espaco tangente. Dizemos que uma secao
@ de T"M é uma 1-forma em M. Podemos, porém, considerar formas que recebem mais de um argu-
mento tomando secdes dos fibrados exteriores e dos fibrados simétricos. Uma secéio w € T(AXT* M)
¢ dita uma k-forma exterior em M; uma secio w € [(SKT* M) é dita uma k-forma simétrica.

Acontece, contudo, que no empreendimento de estabelecer uma teoria de calculo nas varieda-
des sdo as formas antisimétricas, as formas exteriores, que se revelam fundamentais. Essa é uma das
razdes pelas quais, o nome k-formas diferenciais, ou ainda s6 k-formas, passou a ser muito usado
para aludir as formas exteriores. Sempre que falarmos numa forma diferencial ou simplesmente
numa forma, estaremos pensando nessas que sdo antisimétricas. Denotaremos por QK (M) o espaco
de todas as k-formas em M; consideramos também o caso k = 0, pro qual Q°(M) := C®(M). Por
€2'(M) denotamos o espago fruto da soma direta @ZOZO Qk(M ), que, em verdade, s6 acontece até que
k atinja a dimensao de M, ja que a poténcia exterior de um espago vetorial é nula quando de grau
maior do que a dimensao do espago.

Um outro tipo importante de se¢des sdo as que tém valores em espacos vetoriais e se obtém
tomando se¢des de fibrados vetorias que sdo produto tensorial de fibrados sobre uma mesma varie-
dade. Para ver isso precisamente, considere sobre M um fibrado vetorial E. Dizemos que uma secdo
 do fibrado AFT*M ® E é uma k-forma em M a valores em E, ou uma E-k-forma em M. Perceba

que poderiamos também considerar secdes dos tipos acima nao s6 em M mas também no proprio
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espaco total E de um fibrado suave sobre M. Por exemplo, secdes de TE ou de AKT*E ® W, sendo
W um espaco vetorial. Voltemos, porém, as k-formas em M para contemplarmos mais coisas.

O produto exterior A no nivel da algebra exterior AV = ®Z°:0 A*V de um espaco vetorial V
induz o produto exterior de formas em uma variedade. Dadas formas w € (M) e n € Q' M), a
forma wAn é uma (k+t)-forma definida como wAn : p — w,An,. Com esse produto, o conjunto Q'(M)
de todas as formas exteriores em M é um algebra graduada. Assim como para formas diferenciais
em R", ha um operador d em Q' (M) chamado também de derivada exterior que produz de uma
k-forma « uma (k + 1)-forma dw. Uma maneira de entender d é como uma gama de operadores
dt - Qk(M) — QkH(M). No caso k = 0, d coincide com T, isto é, dada uma funcio a € C*(M),
da é o mapa tangente Ta : TM — R. Esse caso k = 0 é inclusive um dos motivos para ser comum
usar d para o mapa tangente, em contraste com nossa escolha que foi a de marcar o carater funtorial
de T. Numa perspectiva axiomatica, o espaco Q' (M) das k-formas pode ser definido como o espaco
gerado a partir de Q°(M) = C®(M) por estas trés operacgdes:

« a operacdo binaria + de adigdo que faz de Q' (M) um grupo abeliano,
 aoperacdo binaria A que é associativa, e
 aoperacdo unaria d,
as quais estdo sujeitas as seguintes condi¢des, nas quais f é uma funcio suave qualquer e 1 é uma
forma qualquer obtida por meio das operacdes:
(i) d e A distribuem-se sobre a adicao;
(i) d(df)=0;
(iii) df ndf =0;
() d(f am) = df an+ fadpse
(v) ddf anp)+df adyp=0.
Dos axiomas, extrai-se essa série de propriedades: se 7 é uma k-forma e @ é uma ¢-forma, dy é uma
(k + 1)-forma, w Ay é uma (k + ¢)-forma; ddny = 0 para toda forma #; se  é uma k-forma para um k

impar, nAn=0;0an=(1D"nrw; e dwan) = do g+ (=1 A dy se w é uma ¢-forma.

3.4 Conexoes e curvatura relativa a uma conexio
A ideia por tras da primeira definicdo de conexdo que apresentaremos é a de, em R", derivar um
campo na dire¢do de outro. Dado um vetor v € R", a derivada direcional de uma funcéo escalar
f € C®(R) é definida sem problemas, ponto a ponto, como o limite (D, f)(p) := lim;_o (f(p+tv) —
f(p))/t. Podemos estender essa defini¢io para um campo vetorial suave Y em R”, visto como funcio
R" — ", estabelecendo (D,Y), := lim; ,o(Y,4s, — Y,)/t para cada p. Podemos dar ainda mais um
passo e definir, dado um outro campo X, o campo DxY fazendo com que em cada p € R" ele assuma
o valor de DXpY em p. A derivada direcional DyY enquanto mapa ¥(R") x X(R") — X(R") dispoe
das seguintes propriedades: é C*(M)-linear em X; é R-linear em Y e obedece a regra de Leibniz
Dx(fY) = (Xf)Y + fDy.

Em uma variedade M, néo conseguimos definir uma derivada de Y na diregéo do vetor X,
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porque nao conseguimos comparar o valor de Y num ponto p com o valor de Y num ponto g perto de
p- Néo ha maneira candnica de identificar os espagos tangentes T,M e T,M e obter uma defini¢ao
para Y, —Y,. Sai-se desse impasse fazendo a definicao de conexéo a partir das propriedades da
derivada direcional. Uma conexdo afim V em M é um mapa V : X(M) x X(M) — X(M) que (i) é
C*™(M)-linear no primeiro argumento, (ii) é R-linear no segundo argumento e (iii) satisfaz a regra
de Leibniz Vx(fY) = (Xf)Y + fVyY.

Repare que podemos enxergar V como um mapa X¥(M) — I'(T*M ® TM) fixando o primeiro
argumento, a imagem de um campo X é a forma Vy a valores em TM, a qual, por sua vez, podemos
enxergar como um mapa TM — TM. No que definiremos a seguir, entenda VxVy como a composta
de Vx com Vy. Define-se a curvatura R relativa a V como R(X,Y) = VxVy —VyVx —V|x y]. Mostra-
se que a curvatura R(X,Y)Z é C*(M)-linear em X,em Y e em Z.

Podemos levar a nocao de conexao para um fibrado vetorial suave E sobre M. Uma conexao V
no fibrado vetorial E é um mapa V : X(M) — T'(E* ® E) que (i) é F-linear e (ii) satisfaz a regra
de Leibniz: Vx(fs) = (Xf)s + fVxs paras € T(E) e f € C®(M). Como antes, podemos definir a
curvatura R relativa a V como R(X,Y) = VxVy — VyVx — V[x y], formula em que enxergamos Vy

e Vy como mapas E — E.

4  Operadores F-lineares e morfismos de fibrados vetoriais

Suponha que E e F sejam dois fibrados vetoriais sobre M e denote C®(M) por F. Dizemos que um
mapa linear L : T(E) — I'(F) é um operador local de E para F se ocorre que, sempre que uma
secdo s € I'(E) se anula em todo um aberto U de M, a secdo Ls € I'(F) também se anula em todo esse
aberto. Ja se isso ocorre ponto a ponto, isto ¢, é valido que sempre que a secdo s se anula num ponto
pem M, a secdo Ls se anula em p, dizemos que L é um operador pontual.

Mostra-se a seguinte propriedade que da mais razdo ao nome operadores locais: todo operador
local L : T(E) — I'(F) induz, dado um aberto U de M, um mapa Ly : T'(E[U) — T'(E|U), chamado
de restri¢do de L a U, que é o Unico pro qual vale que Ly(s|U) = (Ls)|U para toda secéo s de E.
Mostra-se que os mapas F-lineares L : T(E) — I'(F) sdo locais e que suas restri¢des a abertos U
sdo também F-lineares. Com isso e usando referenciais locais, mostra-se que, mais que locais, tais
mapas F-lineares sdo pontuais.

Ha uma correspondéncia entre os morfismos de fibrados ¢ : E — F e os mapas F-lineares
['(E) — T(F). Para vislumbrarmos isso, considere a funcdo que leva o morfismo de fibrados ¢ :
E — F no mapa ¢’ : T(E) — I'(F),s — ¢ o s. Para verificar a sobrejetividade, nota-se que, dado um
mapa F-linear L : T'(E) — I'(F), para cada x em M, podemos construir uma transformagio linear
¢y * E, — F, definindo, para cada e em E,, que ¢,(e) = (Ls), para qualquer se¢do s de E tal que
sy = e. Isso ndo depende da escolha de s, pois se t é uma outra secdo que vale e em x temos que
(s—1), = 0e, como L é pontual, L(s — 1), = (Ls)y — (Lt);y = 0, logo, (Ls), = (Lt),. Constréi-se

entdo o morfismo de fibrados ¢ que manda e € E, para ¢,(e) e pro qual temos ¢’ = L. Para verificar
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a injetividade, tomemos morfismos ¢ e { de E em F tais que ¢’ = ¢/’. Para cada x em M e cada e em
E,, pegue uma se¢io s que valha e em x. Temos ¢(e) = ¢ © s(x) = (¢'s)y = (Y’'s)y = P o s(x) = Y(e).
Logo, ¥ = ¢, do que segue a injetividade.

5 Grupos de Lie

5.1 Definicoes basicas
Eis mais uma ocasido em que incrementaremos uma objeto com que ja somos familiares ganhando
uma estrutura mais rica. Podemos enxergar um grupo de Lie como uma variedade a que se conferiu a
qualidade algébrica de um grupo, mas também como um grupo em cujo comportamento se percebeu
suavidade. Bom, um grupo G se trata de um grupo de Lie se podemos nele considerar uma estrutura
de variedade segundo a qual a operagdo de multiplicagdo p : G x G — G e o mapa de inversdo
1 : G = G sdo fungdes suaves. Na mesma toada, os morfismos de grupos suaves sdo os a que nos
referimos como morfismos de grupos de Lie. Ha alguns exemplos fundamentais de morfismos de
grupos de Lie que sao também difeomorfismos:
« As translagoes a esquerda, L8 : x — gx, sdo difeomorfismos. A suavidade decorre de que
se pode escrever L8 como combinacio de funcgdes suaves: a - (g,a) — ga. Como g~ 'ga = a,
a translacio Lg_1 é uma inversa suave para L8, logo, L8 é um difeomorfismo. E, é claro, o
universo s6 é um lugar seguro porque as translagéoes a direita RS : x — xg também séo.
« O mapa de inversdo : também é, ja que ¢ é suave e é inversa de si mesma.
« E, por fim, as conjugacées C& também sio, tendo em vista que C8 se pode escrever como
composta de difeomorfismos: C& = L8 » RE .
Esses difeomorfismos tanto sdo importantes para entender a topologia dos grupos de Lie (enquanto
homeomorfismos), quanto o sdo por ensejar uma série de construgdes naturais que faremos a frente.

Dada uma funcéo suave f : M — N, dizemos que campos X € X(M) eY € X(N) sao f-
relacionados se para cada m € M valer que (Ty,f) Xy, = Yg(). Por G ser uma variedade, podemos
considerar campos vetoriais em G. Entre os campos vetoriais de G, ha uma classe especial: a dos
campos que sdo LE-relacionados a si mesmos, os quais chamamos de campos invariantes a es-
querda. E imediato ver que a soma de dois campos invariantes a esquerda estd L8-relacionada a si
mesma ja que o mapa tangente é linear nas fibras de TM e que o campo vetorial nulo é relacionado
a si proprio. Isso faz da colecao de todos esses campos, que denotamos por g, um subespaco vetorial
de X(G) e, mais ainda, g é fechado sob o colchete de Lie. Em vista disso, nos referimos ao espaco g
dos campos invariantes a esquerda de G como a dlgebra de Lie do grupo de Lie G.

Ha uma outra propriedade muito importante da colecdo de todos os campos invariantes a es-
querda, ela é inteiramente catalogada pelo espaco tangente de G na identidade e, ou seja, o valor que
um campo invariante a esquerda assume na identidade da de saber o valor assumido em todos os
demais pontos de G. Essa correspondéncia se substancia no mapa de avaliacdo ¢ que é simplesmente

o mapa desde g a T,G que manda X no seu valor X, na identidade e se trata de uma bijecdo. Vamos
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fazer essa demonstracio.

Ja que ¢ é linear, a injetividade vem simplesmente de que seu nucleo é trivial: se X, = 0,
temos que X é nulo em todo g, pois T,L8 é linear e, de que X, é invariante a esquerda temos que
TL8X, = Xpe, = Xg. Provar que ¢ € sobrejetivo requer-nos um pouco mais de escrita. Tome uma
derivacgdo v no codominio T,G de . O campo vetorial v definido como g — T,L&v assume o valor
v em e e é invariante a esquerda: Tth\')g = TthTeLgf/e = T,(L" o L84, = T,L8"y, = T,L8"v = Vgh-
Para ver que V ¢é suave, usaremos uma caracterizacdo equivalente para a suavidade de um campo
que é a de operar em fungdes suaves gerando fung¢des suaves. Fixe uma f € C*(G) e note que
(Vf)g) = Vo f = (T.LEv)f = v(f o L8). Podemos calcular o valor de v em f o L& por meio de
curvas. Tome uma curva suave y : (—§,+5) — G tal que y(0) = e e y’(0) = v. Temos que
v(f o L8) = % (foL8ey),_y. A derivada de f o L8 oy emt = 0 coincide com a derivada parcial
desta fungdo ¢ : (—8,4+5)xG — R(t, g), (t,x) > foL¥oy(t) emrelacdotem (t,x) = (0, g). Como ¢
se escreve compondo e tomando produto de fun¢des suaves, = f o o (y x 1), sua derivada parcial
¢; € uma funcéo suave e, portanto, ¢;;—q = v f também é. Concluimos entdo que T,G é isomorfo a g.

Aplicando a ideia de fluxos aos campos invariantes a esquerda, podemos de maneira natural
definir uma aplicacdo de g em G. Simbolizando por X o fluxo maximal de um campo X, pode-

mos definir o mapa exponencial de G como exp : ¢ —» G, X +— X(1,e). Ao denotarmos

exp(X) como eX e vale a propriedade agradavelmente familiar: eSHDX = X ptX para s,t € R.
: X _ 1 : -
Temos também que ge'* = X(t, g) e, o que solidifica a natufahdade g = T,G T—f) TG = §
de exp, que, dado um morfismo de grupos de Lie f : G — G, vale o lexp ¢ éxpl
diagrama comutativo ao lado. G f G

5.2 Representacoes

Dado um grupo G e um espago vetorial V chamamos a um morfismo de grupos G — GL(V) de
uma representacdo de grupo de G em V. Acontece que o grupo de automorfismos de um espago
vetorial pode ser encarado como um grupo de Lie e ai, se G ¢ um grupo de Lie, podemos considerar
representacées de grupos de Lie, morfismos G — GL(V) de grupos de Lie.

Para reparar que GL(V) é uma variedade, podemos injetar GL(V) em R” como uma subvarie-
dade aberta. Com uma escolha de base para Ve pondon := dimV, se identificam V e R" e constroi-se
um isomorfismo desde GL(V) as matrizes invertiveis GL(n, R). Tendo em vista que GL(n, R) é um
aberto do espaco M(n) de matrizes quadradas de ordem n — por ser a pré-imagem do aberto R\ {0}
pelo mapa do determinante —, e que IM(n) é um grupo de Lie por sua identificagao candénica com R",
podemos conceder a GL(V) a estrutura suave que faz da injecdo GL(V) = GL(n,R) = M(n) = R
um mergulho.

Ante que todo grupo de Lie G tem um espaco vetorial g que lhe é especial, é natural tentar cons-
truir uma representacdo Ad do grupo G em sua propria algebra de Lie, a qual chamamos represen-
tacao adjunta de G. Mediante a identificacdo candnica T,G => g pelo mapa de avaliagdoe : g — G,

podemos identificar cada transformacéo L que estid em GL(T,G) com uma transformacio e ' o Lo ¢.
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Além disso, dado um g em G, o mapa tangente T,C& é um isomorfismo, visto que as conjugacdes sdo
difeomorfismos. Define-se entio Ad da seguinte maneira: Ad : G — GL(g), g e 1o (T,C8)oce

se pode mostrar que Ad é efetivamente um morfimos de grupos. Denotaremos Ad(g) =: Ad®.

5.3 Acao de grupos de Lie
Um outro aspecto que é importante entendermos para seguirmos rumo aos fibrados principais, é o
de como podem os grupos agir sobre conjuntos. Uma agao a direita de um grupo G em um conjunto
X éummapa< : XxG — X,(x,g) » x<agtalquex<e=xe(x<g)<h = x<(gh). SeG for
um grupo Lie e X for uma variedade, com a condi¢do a mais de que < seja suave, dizemos que essa
€ uma agao suave a direita. Com frequéncia suprimiremos os simbolo que denota a agéo.
Instituida uma acdo de G em X, podemos falar em alguns subconjuntos de G e de X especi-
ais para cada ponto x em X. O subgrupo de estabilizadores ou o estabilizador de x é o con-

junto Stab(x) = G* = {g € G|xg = x}. Ja a érbita de x é o conjunto Orb(x) = xG = {y €

X1|3g € G(xg = y)}. Ha um resultado simples que expde a relagio entre a 6rbita e o subgrupo
de estabilizadores de um ponto, o teorema orbita-estabilizador. Fixe um ponto x e defina a funcao
x : G—> X, g~ xg, cujaimagem ¢é a Orbita xG de x. Note a seguinte sucessao de condi¢des
equivalentes: y(g) = y(h) & xg = xh & x = x(hg™!) & hg™! € G* & h € G*g, de que concluimos
que as classes laterais do estabilizador G* sao precisamente as fibras de y. Concluimos assim, que
X, ou ainda, o proprio ponto x, define uma bijecido natural G/G* = xG, [g] — xg.

Dizemos de uma agio que ela é livre se, sempre que xg = xh, valer que g = h. Equivalente-
mente, nunca ocorrre xg = x, a ndo ser que g = e. Ja o termo transitiva empregamos para dizer que
para todo par de pontos x e y se encontra um elemento g do grupo que leva um ao outro: xg = y.

Se G age em um conjunto X e em um conjunto Y, dizemos que uma funido f : X —» Y é G-
equivariante se para todos g e h em G e todo x em X valer que f(x < g) <h = f(x < (gh)).

Uma importante agdo suave que nasce do que ja fizemos é a acdo de um grupo de Lie G em sua

algebra de Lie g por meio da representacio adjunta, que se define como gxG — g, (X, g) = Ad®X.

6 Fibrados principais

6.1 Definicoes basicas
Seja G um grupo de Lie. Podemos falar em fibrados suaves cuja fibra modelo seja G enquanto con-
junto; suponha, assim, que p : P — M seja um G-fibrado suave. Dizemos que esse fibrado é um
fibrado principal desde que satisfaca estas duas condicoes:

(i) esta definida uma agdo de G em P que é suave e é livre; e

(ii) as trivializacdes locais ¢/ : p~}(U) — U xG de P sdo G-equivariantes, entendendo-se em U x G

a acdo que fixa a primeira componente e multiplica a segunda, (x, g) < h = (x, gh).

Dessa definicao, se extrai logo uma outra propriedade importante: G age transitivamente nas fibras
de p. Isso porque G age transitivamente em {x} x G e uma trivializacdo  restrita a fibra de x é um

mapa P, — {x} x G equivariante.

15



Cabe ainda destacar mais um traco do comportamento de G em relagio ao espaco total P, a
acdo de G em P induz uma ag¢do de G no fibrado tangente. Sempre que se estabelece uma agao suave
numa variedade, isso se da por consequéncia. Definindo r, como o mapa que representa a agdo de
um elemento g, isto é, 7y : P > P, p — p < g, podemos considerar que G age em TP mandando
(g,Yp) para (Trg)Y,. Sera conveniente a sucinta notagéo g.Y, = (T,rg)Y).

Sejam p : P — Men : Q — N G-fibrados principais suaves. Um mapa suave — Q
F : P — Q é um morfismo de fibrados principais se F é G-equivariante e existe p l'i
f : M — N suave talque fop=n-oF. M-t N
6.2 Fibrado de referenciais
Um dos principais exemplos de fibrados principais é o fibrado de referenciais de um fibrado vetorial.
Fixemos um fibrado vetorial 7 : E — M de fibra modelo V de dimensdo n e construamos o seu
fibrado de referenciais p : Fr E > M, que é um fibrado GL(V)-principal.

Dada uma lista b = (b4, ..., b,) de n vetores de V, se o conjunto de suas entradas constituir uma
base para V, dizemos que essa lista, essa base ordenada, é um referencial para V. Denotamos o
esbaco de todos os referenciais de V por FrV. Ha uma agio natural de GL(V) em Fr(V) que é livre
e transitiva dada por Lb = (Lby, ..., Lb,) para L € GL(V) e b € Fr(V). Fixe uma base e de V. Por
a acdo ser livre, GL(V)/Stab(e) = GL(V); por ser transitiva, Orb(e) = Fr(V). Isso nos da entdo
uma bije¢do y : GL(V) — Fr(V), L — Le e com ela podemos atribuir uma estrutura suave a
FrV. Essa elaboracao se aplica também a cada fibra E,. do fibrado vetorial de modo que podemos
definir o espaco total Fr E como a unido disjunta | |,y Fr E, e p como a proje¢io natural sobre M.
As cartas (U, 1) de E induzem as cartas (U, l}) de FrE. Definimos 1/; mapeando cada b, € E, para
(x, W(by), ..., lﬁ(bn))) A ac¢io de G em FrE é definida comob < L = 1/;_1(x, L(y(by), ..., l//(bn))) e se

verifica que é independente de cartas.

6.3 Campos vetoriais fundamentais, o fibrado vertical e distribuicdes horizontais
A cada campo vetorial invariante a esquerda, podemos associar um campo vetorial no espaco total
do fibrado principal. Faz-se isso assim: para cada X em g, defina o campo X : P — TP pondo

X

X, = %( paeX ) 1=~ O lado direito dessa igualdade é de fato um vetor, repare que p <€ é uma

curva suave e X » ¢ o vetor tangente dela em ¢t = 0. O campo que resulta dessa construcéo é, de

fato, suave e sio justamente as curvas p < etX

as suas curvas integrais com inicio em cada p. Isso
se codifica num mapa natural o : ¢ - X(P), X +— X. Veremos adiante que o subespago de X(P)
imagem desse mapa linear ja é especial meramente em relacao a estrutura de fibrado suave de P.
Pela conversa do fibrado principal p : P - M com fibrado tangente de M, podemos destacar
uma porcao do fibrado tangente do fibrado principal. Fixe um ponto p em P e considere o mapa
tangente Tp : T,P — T,,)M da projecao p do fibrado principal no ponto p. Definindo V,P como

o nucleo de T),p, ganhamos a seguinte sequéncia exata:

Tpp
0—>VPP;>TPP—>T )M—>0

p(p
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e somos impelidos a definir o subfibrado VP := | | pep VP, que € um fibrado trivial sobre P. Esse
fibrado chamamos de o fibrado vertical de P. Observe que néo fizemos nenhum uso da estrutura
de fibrado principal de P, essa construcéo se aplica a qualquer fibrado suave.

Veremos agora que os campos fundamentais sdo verticais em todo lugar. Um campo funda-
mental X ser vertical é ele estar no nucleo de T,. Para podermos verificar isso, fixemos um p € P,
denotemos por j, a fungdo G — P, g — p < g e reparemos no seguinte. E possivel calcular X
de uma forma alternativa a que usamos para definir o campo vetorial fundamental associado a um
campo invariante a esquerda X. Aplicando o mapa tangente de j, na identidade a X, temos que
TejpXe = % (jp( X ))t:() = % (p< etX)tzo = X, e fica visivel que 0 mapa o € linear de fato. Com
essa maneira de calcular X, temos que T,pX ,, = (T,p ° T,j,)A = Tp(p © j,)A. Como G age fibra a
fibra, o mapa p e j, tem que ser constante e, portanto, T(p © j,)A = 0 e X ¢ vertical.

A analise da a¢do de G em cada ponto p por meio do mapa j, nos diz mais que s6 que os
campos fundamentais sdo verticais, em verdade, para cada p em p, o mapa tangente T.j, da um
isomorfismo natural entre a algebra de Lie g e o espago tangente vertical V,P. A demonstracao
disso segue a seguinte linha. Um campo fundamental X se anula num ponto p se, e so6 se, ele
esta na algebra de Lie 8(GP) do subgrupo de estabilizadores de p. Isso porque se X € £(GP), o

X g constante; e

subgrupo uniparamétrico ¢/X esta contido todo em G? e ai X p € nulo, pois p < el
se, reversamente, X P € 0, entdo temos duas curvas integrais p e p < X para X com inicio em p e
dai, por unicidade, ¢’ X tem que estabilizar p. Disso extraimos que o ntucleo de T, Jp € a dlgebra de
Lie do subgrupo de estabilizadores de p. Como a agéo é livre, GP é s {e} e o nucleo 8(GP) de T, Jp
¢ trivial e T,j, € injetivo. Da sequéncia exata que obtivemos acima, temos que a dimensao de V,P
¢ dimT,P — dim T, )M = (dimG + dim M) — dimM = dimG = dim T,G = dimg e, portanto, T,j,
também é sobrejetor. Isso nos enseja enxergar o fibrado veritcal VP também como o fibrado vetorial
trivial gp de fibra modelo g. Fixemos, consistentemente, j, : gp = VP como o isomorfismo entre
esses dois fibrados.

Uma distribuicdo numa variedade ¢ um subfibrado do fibrado tangente. A luz da existéncia
natural do fibrado vertical de P, podemos definir as distribui¢coes horizontais em P como aquelas
distribuicdes H que, em soma direta com o fibrado vertical, compdem TP, isto é , TP = vV, ® H.
Fixada uma distribuicdo horizontal H, podemos falar em componentes verticais e componentes ho-
rizontais de um vetor por meio das projecdes naturaisv : TP - VP e h : TP » H da soma direta.
Note que, a despeito de que os vetores verticais se destaquem independentmente de uma distribuigao
horizontal, falar em componente vertical depende de saber a componente horizontal. A distribui-
¢do horizontal estabelece uma “direcdo” de projecdo sobre o fibrado vertical. Veremos que o tipo
mais desejavel de distribuicdo horizontal num fibrado principal sdo as distribui¢coes horizontais
invariantes que se caracterizam por serem estaveis sob a acdo de G em TP.

Considere um vetor vertical em T,P sugestivamente denotado por A,. Podemos estendé-lo a
um campo fundamental A, pois Tej, enquanto mapa g = T,G — VP € bijetivo e entéo o campo

fundamental que tem valor A, em p € uma extensdo vertical natural para esse vetor. Fixada uma
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distribuicdo horizontal H, podemos fazer algo semelhante para um vetor horizontal em p.

6.4 Conexoes e distribuicoes horizontais invariantes
Vamos formalizar a ideia de conexdo no contexto de fibrados principais e observar que ha uma re-
lagdo entre implementar uma conexao e estipular uma distribui¢do horizontal complementar ao fi-
brado vertical. Uma conexao em P serd uma uma 1-forma com valores em g com certas propriedades
e, faremos emergirem essas propriedades construindo uma g-1-forma a partir de uma distribuicdo
horizontal invariante.

Considere no fibrado p : P — M uma distribui¢éo horizontal H tal que, para todo B, em H,
o vetor g*Bp ainda esteja em H, ou seja, uma distribuicio horizontal invariante sob a agdo de G em
TP. Recordando que dispomos do mapa j : gp — VP e, fixada H, do mapa v : TP -» VP, podemos

sy ao enxergar w como um mapa TP — g, isto é, ela

construir em P a g-1-forma « como sendo j~
¢é a forma que delega a cada vetor o elemento da algebra de Lie relativo a sua componente vertical
segundo a distribui¢do horizontal H. Verifica-se que essa forma « possui estas duas propriedades:

(i) w(Ap) = Aparatodo A€ getodop€ Pje

(i) wo g, = Ad ® o w para todo g em G.
Definiremos uma conexio simplesmente como uma forma com tais propriedades. Diz-se que uma
forma w € T(T*P ® g p) é uma conexdo principal em P se (i) ela remete os campos fundamentais
aos campos invariantes a esquerda (wA = A); e (ii) ela é G-equivariante enquanto mapa TP — g. A
primeira propriedade definidora de uma conexao w ja ilumina como w da origem a uma distribuigao.
Se tivéssemos um mapa v : TP - M, essa propriedade poderia refraseada dizendo que w coincide
com v j; | enquanto mapa TP — g, tendo em vista que v mandaria um campo fundamental A (que
é vertical) nele mesmo e j, 1 jdentifica-lo-ia, em cada p, com o elemento A de g = 9p de quem é o
campo fundamental.

Visto que v se anularia nos campos horizontais conforme sua respectiva distribuicdo horizon-

tal, inclinamo-nos a definir H := kerw = | |,¢p kerw, como a distribuicdo associada a w com a
esperanca de que ela seja horizontal e invariante e que, realmente, w seja a forma construida com
o mapa j e o mapa v, providenciado por H, como fizemos anteriormente. Essa esperanca se con-
cretiza e ficamos com uma bonita correspondéncia. Dada uma distribui¢ao horizontal invariante H,
constréi-se uma conexao principal w pondo w = j; ! o v da qual H é o nticleo. Dada uma conex?o

principal o, o seu niicleo H é uma distribuicio horizontal invariante tal que » = j; ! o v.

6.5 Curvatura e fibrados associados
A definicdo de curvatura num fibrado principal se faz a partir de uma conexao principal. Dada uma
conexdo principal w em p : P — M, a forma de curvatura (2 associada a ©w é uma g-2-forma
Q € T(A’T*M ® g) dada por Q = dw + %[w, w]. Mostra-se que a forma de curvatura possui as
seguintes trés propriedades

« ¢ horizontal, no seguinte sentido: em cada T, P, para quaisquer X,, e Y, em T, P, vale que

(X, Yp) = dw(hX,, hY,), o que implica que (2 se anula em campos verticais.
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« Q é G-equivariante, no seguinte sentido: para qualquer g em G, g*Q = Adg_IQ, em que se
deve entender g*Q como Qo (g, X g,).
« Q satisfaz a segunda identidade de Bianchi, dQ = [Q, w].
Podemos também compreender 2 com uma sec¢do de um outro fibrado, um associado a P que iremos
construir.

Suponha que ¥k : G — GL(V) seja uma representacdo de G num espago vetorial V e, por
brevidade, denotemos x(g)v por gv. Definimos o fibrado E sobre M como o produto fibrado P x, V,
explicitamente, o quociente de P x V pela relagdo de equivaléncia (p,v) ~ (g, w) < 3g € G((p,v) =
(pg, g_lv)). Como a acdo de G em P se da fibra a fibra, temos o mapa de projecdor : P x, V> M
que manda uma classe [ p,v] em p. Chamamost : Px,V — M de o fibrado associado de P relativo
a representacado k. Ele é de fato um fibrado e, mais que isso, um fibrado vetorial. Podemos definir
cada trivializacao 1} para E a partir de cada carta (U, ) de P. O mapa 1} manda pontos p em P para
pares (u, g) em U xG. E possivel definir um difeomorfismo canénico f : (UxG)x, V — V enviando
a classe [(x, g),v] em (x, gv). A definicio nio depende de representantes, pois f([(x, g)h,h~1v]) =
(x, ghh™ ) = (x, gv) = f([(x, g),v]). A inversa de f é aquela que manda (x, v) na classe [(x, e), v].
A funcio z} : Y U) = p7i(U) x, V = U x V se define por &([p, v]) = f([¥(p),v]). Além disso,
em cada fibra E,, as operagdes de espaco vetorial sao induzidas de V, isto é, aplica-se i/, opera-se
em {x} x V e ai retorna-se aplicando 1/~!. Com essas definicdes, o fibrado associado E = P x, V
se configura como um fibrado vetorial sobre M. Chamamos de fibrado adjunto de P o fibrado
associado a P relativo a representacdo adjunta Ad e o representamos por Ad(P).

Dizemos que uma V-k-forma 77 em P é de tipo k se g*n = k(g™ 1)y, nessa expressio devemos
entender g*n =no HLl gk, isto é, g"n opera em campos Xj, ..., Xg dando (g, Xj, ..., . Xx). Dizemos
que uma k-forma a valores vetoriais ou escalares  em P é horizontal se n(Xi, ..., X;) = 0 sempre
que um dos argumentos é vertical. Veremos que ha uma correspondéncia entre as V-k-formas ho-
rizontais de tipo k em P e as k-formas em M a valores no fibrado associado E relativo a x. A forma
de curvatura (2 associada a conexdo V em P é horizontal de tipo Ad e correspondera entdo a uma
E-k-forma. Denotemos por QK(P, V) o conjunto das V-k-formas horizontais de tipo k.

Com uma escolha de ponto p em P,, a fibra E, do fibrado associado pode ser identificada com
V por meio do mapa p, : V = E,, v [p,v]. Dada uma forma r em QX(P, V) podemos construir
uma E-k-forma n° em M assim. Dados m € M e v, ..., v € T,,M, tome um ponto p em P, e tome
vetores uy, ..., uy em TP tais que T,p(y;) = v;; definimos n°(vi, s V) = Py o N(uy, ..., u). Mostra-se
que essa defini¢do ndo depende nem da escolha de p e nem das escolhas de levantamento u; para
v;. Na outra direcdo, se A pertence a Qk(M, E), dados p € P e uy,...u, € T,P, define-se a forma
A e Q,’g(P, V) pondo A*(uy, ..., u) = p;l(A(Tpp Uy, ... Tppuy)). Da definicdo, é imediato que A é
horizontal e se verifica que ¢ de tipo k. Feito isso, sabe-se que os mapas b : QX(P,V) — QK(M, E) e
¢ : OY(M,E) > Q,’ﬁ(P, V) estdo bem definidos e verifica-se que sdo inversos, isto é, que ha de fato
uma correspondéncia.

Por haver essa correspondéncia, quando k = 2 e x é a representacdo adjunta de G, temos em
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particular o que anunciaramos: que a curvatura (2, que é uma 2-forma em P a valores em g, pode

ser vista como uma 2-forma em M a valores no fibrado adjunto Ad(P) = P x4 g@.

7  Consideracoes finais

Apresentamos, de forma abreviada, a teoria genérica de variedades suaves, abordando fungdes sua-
ves, fibrado tangente, campos vetoriais e fluxos. Depois disso, exploramos a teoria basica dos fibra-
dos vetoriais suaves, expondo as ideias a respeito de fibrados derivados obtidos por meio de funtores
suaves, tratando os conceitos de secoes, formas diferenciais, conexdes e curvatura e estabelecendo a
correspondéncia entre operadores C*°(M)-lineares e morfismos de fibrados. Passamos entdo a uma
exposicao sobre grupos de Lie, acdes de grupo e representacdes de grupo. Vimos entdo o que sdo
os fibrados principais e que neles ha naturalmente a ideia de vetores verticais, a qual leva a uma
nocao de conexao no fibrado principal. Ha uma correspondéncia entre a escolha de uma conexao
e a de uma distribui¢do invariante complementar ao fibrado vertical. Fixar uma forma de conexao
enseja definir as componentes vertical e horizontal de cada vetor tangente ao fibrado principal e
uma nocio de curvatura relativa a essa conexdo. Vimos, por fim, que dada uma representacdo do
grupo modelo do fibrado principal em um espaco vetorial, emerge o conceito de fibrado associado,
com o qual podemos enxergar a forma de curvatura como uma forma na variedade base a valores no
fibrado associado. Isso porque, nestas circunstancias, ha uma correspondéncia entre as formas no
fibrado principal a valores nesse espaco vetorial e as formas na variedade base a valores no fibrado
associado relativo a essa representacao.

Os passos seguintes no percurso rumo ao Teorema de Atiyah-Singer, que devem ser dados numa
proxima etapa desse estudo, sdo explorar a teoria dos operadores C*°(M)-lineares — apreendendo os
conceitos de operadores diferenciais elipticos e simbolos desses operadores —, e explorar a teoria de
classes caracteristicas no nivel de fibrados vetoriais e de fibrados principais com vistas a, com um

entendimento sdlido do enunciado do teorema, aprender uma de suas demonstragdes.
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